login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^n + n - 1.
22

%I #92 Sep 08 2022 08:44:59

%S 0,2,5,10,19,36,69,134,263,520,1033,2058,4107,8204,16397,32782,65551,

%T 131088,262161,524306,1048595,2097172,4194325,8388630,16777239,

%U 33554456,67108889,134217754,268435483,536870940,1073741853,2147483678

%N a(n) = 2^n + n - 1.

%C Shortest length of bit-string containing all bit-strings of given length n. - _Rainer Rosenthal_, Apr 30 2003

%C Such a bitstring can be obtained by taking a length-2^n binary de Bruijn sequence and repeating the n-1 initial symbols at the end. - _Joerg Arndt_, Mar 16 2015

%C Bit string definition is equivalent to minimum number of tosses of a coin to achieve all possible outcomes of n tosses. - _Maurizio De Leo_, Mar 01 2015

%C Also the indices of Fermat numbers that can be represented as cyclotomic numbers. Specifically, F(a(n)) = cyclotomic(2^2^n,2^2^n). - _T. D. Noe_, Oct 17 2003

%C a(n) = A006127(n) - 1. - _Reinhard Zumkeller_, Apr 13 2011

%C Randomly select (with uniform distribution) a length n binary word w. a(n) is apparently the expected wait time for the first occurrence of w over all infinite binary sequences. For example: a(4)=19. We consider A005434(4)=4 distinct classes of length 4 binary words that share the same autocorrelation. There are A003000(4)=6 words that have waiting time = 16; 2 words with waiting time =20; 6 words with waiting time = 18; and 2 words with waiting time =30. 1/16*(6*16 + 2*20 + 6*18 + 2*30) = 19. - _Geoffrey Critzer_, Feb 27 2014

%D Discussed in newsgroup de.rec.denksport in Apr 2003

%D N. G. de Bruijn: A combinatorial problem. Indagationes Math. 8 (1946), pp. 461-467.

%H Vincenzo Librandi, <a href="/A052944/b052944.txt">Table of n, a(n) for n = 0..1000</a>

%H Adam M. Goyt and Lara K. Pudwell, <a href="http://arxiv.org/abs/1203.3786">Avoiding colored partitions of two elements in the pattern sense</a>, arXiv preprint arXiv:1203.3786 [math.CO], 2012; <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Goyt/goyt4.html">J. Int. Seq. 15 (2012) # 12.6.2</a>.

%H A. M. Hinz, S. Klavžar, U. Milutinović, C. Petr, <a href="http://dx.doi.org/10.1007/978-3-0348-0237-6">The Tower of Hanoi - Myths and Maths</a>, Birkhäuser 2013. See page 178. <a href="http://tohbook.info">Book's website</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1001">Encyclopedia of Combinatorial Structures 1001</a>

%H Viktor Lopatkin, Pasha Zusmanovich, <a href="https://arxiv.org/abs/1907.03690">Commutative Lie algebras and commutative cohomology in characteristic 2</a>, arXiv:1907.03690 [math.KT], 2019.

%H T. Manneville, V. Pilaud, <a href="http://arxiv.org/abs/1501.07152">Compatibility fans for graphical nested complexes</a>, arXiv preprint arXiv:1501.07152 [math.CO], 2015-2016.

%H E. H. Rivals, <a href="http://www.lirmm.fr/~rivals/RESEARCH/PERIOD/"> Autocorrelation of Strings</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CyclotomicPolynomial.html">Cyclotomic Polynomial</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CoinTossing.html">Coin Tossing</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,2).

%F G.f.: (2-3*x)/((1-2*x)*(1-x)^2).

%F a(n+1) = 2*a(n) - n + 2 with a(0)=0. - Pieter Moree, Mar 06 2004

%F For n>=1: partial sums of A000051. - _Emeric Deutsch_, Mar 04 2004

%F a(0)=0, a(1)=2, a(2)=5, a(n+3) = 4*a(n+2) - 5*a(n+1) + 2*a(n). - Hermann Kremer (Hermann.Kremer(AT)online.de), Mar 16 2004

%F a(n) = A000225(n) + n. - _Zerinvary Lajos_, May 29 2009

%F E.g.f.: U(0), where U(k) = 1 + x/(2^k + 2^k/(x - 1 - x^2*2^(k+1)/(x*2^(k+1) - (k+1)/U(k+1) )));(continued fraction, 3rd kind, 4-step ). - _Sergei N. Gladkovskii_, Dec 01 2012

%F G.f.: G(0)*x/(1-x) where G(k) = 1 + 2^k/(1 - x/(x + 2^k/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, May 24 2013

%F G.f.: Q(0)*x/(1-x), where Q(k)= 1 + 1/(2^k - 2*x*4^k/(2*x*2^k + 1/Q(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 24 2013

%F E.g.f.: exp(2*x) - (1-x)*exp(x). - _G. C. Greubel_, Oct 18 2019

%e a(3) = 10 because "0001110100" has length 10 and contains all possible patterns of 3 bits:

%e 0001110100

%e ----------

%e 000.......

%e .001......

%e ......010.

%e ..011.....

%e .......100

%e .....101..

%e ....110...

%e ...111....

%p spec:= [S,{S=Prod(Union(Sequence(Union(Z,Z)),Sequence(Z)),Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);

%p seq(2^n + n-1, n=0..40); # _G. C. Greubel_, Oct 18 2019

%t Table[2^n+n-1, {n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Oct 25 2008 *)

%o (Magma) [2^n + n - 1: n in [0..40]]; // _Vincenzo Librandi_, Jun 20 2011

%o (PARI) a(n)=2^n+n-1 \\ _Charles R Greathouse IV_, Nov 20 2011

%o (Sage) [2^n +n-1 for n in (0..40)] # _G. C. Greubel_, Oct 18 2019

%o (GAP) List([0..40], n-> 2^n +n-1); # _G. C. Greubel_, Oct 18 2019

%Y Cf. A000051, A000215, A160692.

%K easy,nonn

%O 0,2

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000