Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #64 Sep 16 2021 06:18:37
%S 1,0,2,12,84,720,7320,85680,1130640,16571520,266747040,4673592000,
%T 88476252480,1798674958080,39061703640960,902110060051200,
%U 22068313153286400,569874634276147200,15486794507222438400,441703937156940057600,13189422568491333964800,411420697666247453184000
%N Expansion of e.g.f.: exp(x^2/(1 - x)^2).
%C Previous name was: A simple grammar.
%C For n>=2, a(n) is the number of ways to partition {1,2,...,n} into any number of blocks. Then partition each block into exactly 2 sub-blocks. Then form ordered pairs by permuting the elements within each pair of sub-blocks. - _Geoffrey Critzer_, Jun 13 2020
%H Seiichi Manyama, <a href="/A052887/b052887.txt">Table of n, a(n) for n = 0..433</a>
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=860">Encyclopedia of Combinatorial Structures 860</a>
%F E.g.f.: exp(x^2/(1 - x)^2).
%F Recurrence: a(0) = 1, a(1) = 0, a(2) = 2, and for n >= 2, (-n^3-2*n-3*n^2)*a(n) +(3*n^2+7*n+2)*a(n+1) + (-6-3*n)*a(n+2) + a(n+3) = 0.
%F a(n) = Sum_{k=0..floor(n/2)} n!/k!*binomial(n-1, 2*k-1). - _Vladeta Jovovic_, Sep 13 2003
%F a(n) ~ 2^(1/6)* n^(n-1/6) * exp(1/3 - (n/2)^(1/3) + 3*(n/2)^(2/3) - n)/sqrt(3) * (1 - 14*2^(-2/3)/(27*n^(1/3)) - 1688*2^(-4/3)/(3645*n^(2/3))). - _Vaclav Kotesovec_, Oct 01 2013
%F a(n) = n!*y(n) with y(0) = 1 and y(n) = Sum_{k=0..n-1} (n-k)*(n-k-1)*y(k)/n for n >= 1. - _Benedict W. J. Irwin_, Jun 02 2016
%e a(3) = 12 because we have the 6 ordered pairs: ({1},{2,3}), ({1},{3,2}), ({2},{1,3}), ({2},{3,1}), ({3},{1,2}), ({3},{2,1}) and their reflections. - _Geoffrey Critzer_, Jun 13 2020
%p spec := [S,{B=Sequence(Z,1 <= card),C=Prod(B,B),S= Set(C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
%t nn = 20; a = x/(1 - x); Range[0, nn]! CoefficientList[Series[Exp[ a^2], {x, 0, nn}], x] (* _Geoffrey Critzer_, Dec 11 2011 *)
%o (Maxima) makelist(if n=0 then 1 else sum(n!/k!*binomial(n-1, 2*k-1), k, 0, floor(n/2)), n, 0, 18); \\ _Bruno Berselli_, May 25 2011
%o (PARI)
%o N=33; x='x+O('x^N);
%o egf=exp(x^2/(1-x)^2);
%o Vec(serlaplace(egf))
%o /* _Joerg Arndt_, Sep 15 2012 */
%K easy,nonn
%O 0,3
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E New name using e.g.f. from _Vaclav Kotesovec_, Oct 01 2013
%E Formula section edited by _Petros Hadjicostas_, Jun 12 2020