Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Apr 18 2017 07:04:10
%S 0,0,2,6,36,240,2040,20160,231840,3024000,44271360,718502400,
%T 12813292800,249080832000,5243151513600,118824010905600,
%U 2884729655808000,74694359900160000,2054806272110592000,59849389401145344000,1840003788783992832000,59545276650123264000000
%N A simple grammar.
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=797">Encyclopedia of Combinatorial Structures 797</a>
%F E.g.f.: log((-1+x)/(-1+x+x^2)).
%F Recurrence: {a(1)=0, a(3)=6, a(2)=2, (n^3+3*n^2+2*n)*a(n)+(-4-2*n)*a(n+2)+a(n+3)}.
%F (RootOf(_Z^2-_Z-1)^n*RootOf(_Z^2-_Z-1)+(1-RootOf(_Z^2-_Z-1))^(n+1)-1)*GAMMA(n+1)/RootOf(_Z^2-_Z-1)/(-1+RootOf(_Z^2-_Z-1)).
%p spec := [S,{B=Prod(Z,C),C=Sequence(Z,1 <= card),S= Cycle(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
%K easy,nonn
%O 0,3
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E More terms from _Alois P. Heinz_, Mar 16 2016