login
Cycles of rooted trees t where for each t all subtrees at root are distinct. n is total number of nodes.
0

%I #11 Dec 02 2021 03:12:28

%S 0,1,2,3,6,10,22,43,97,211,481,1090,2535,5870,13774,32383,76607,

%T 181709,432865,1033657,2475869,5943440,14300623,34475031,83266498,

%U 201441441,488098768,1184353854,2877625762,7000359245,17049321176

%N Cycles of rooted trees t where for each t all subtrees at root are distinct. n is total number of nodes.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=782">Encyclopedia of Combinatorial Structures 782</a>

%F G.f.: Sum_{k>=1} (phi(k)/k) * log( 1/(1-B(x^k)) ) where B(x) is the g.f. for A004111. - _Sean A. Irvine_, Dec 02 2021

%p spec := [S,{C=Prod(B,Z),B=PowerSet(C),S=Cycle(C)},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);

%Y Cf. A004111.

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000