login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of e.g.f.: log(1-x)^4.
4

%I #24 Jul 27 2020 16:45:32

%S 0,0,0,0,24,240,2040,17640,162456,1614816,17368320,201828000,

%T 2526193824,33936357312,487530074304,7463742249600,121367896891776,

%U 2089865973021696,37999535417459712,727710096185266176,14642785817771802624,308902349883623731200,6818239581643475251200

%N Expansion of e.g.f.: log(1-x)^4.

%C Previous name was: A simple grammar.

%H G. C. Greubel, <a href="/A052753/b052753.txt">Table of n, a(n) for n = 0..448</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=709">Encyclopedia of Combinatorial Structures 709</a>

%F E.g.f.: log(-1/(-1+x))^4.

%F Recurrence: {a(1)=0, a(0)=0, a(2)=0, (1+4*n+6*n^2+4*n^3+n^4)*a(n+1) + (-4*n^3-15-18*n^2-28*n)*a(n+2) + (6*n^2+24*n+25)*a(n+3) + (-4*n-10)*a(n+4)+a(n+5), a(3)=0, a(4)=24}.

%F a(n) ~ (n-1)! * 2*log(n)*(2*log(n)^2 + 6*gamma*log(n) - Pi^2 + 6*gamma^2), where gamma is Euler-Mascheroni constant (A001620). - _Vaclav Kotesovec_, Sep 30 2013

%F a(n) = 24*A000454(n) = 4!*(-1)^n*Stirling1(n,4). - _Andrew Howroyd_, Jul 27 2020

%p spec := [S,{B=Cycle(Z),S=Prod(B,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t CoefficientList[Series[(Log[1-x])^4, {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Sep 30 2013 *)

%o (PARI) x='x+O('x^30); concat(vector(4), Vec(serlaplace((log(1-x))^4))) \\ _G. C. Greubel_, Aug 30 2018

%o (PARI) a(n) = {4!*stirling(n,4,1)*(-1)^n} \\ _Andrew Howroyd_, Jul 27 2020

%Y Column k=4 of A225479.

%Y Cf. A000454, A052517.

%K easy,nonn

%O 0,5

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E New name using e.g.f., _Vaclav Kotesovec_, Sep 30 2013