login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A simple grammar.
4

%I #16 Jul 14 2024 15:29:34

%S 1,1,4,19,107,647,4167,27847,191747,1349743,9671316,70297105,

%T 517079157,3841701488,28787546360,217317367487,1651144126659,

%U 12616570941114,96891439504019,747452640586114,5789461514134881

%N A simple grammar.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=707">Encyclopedia of Combinatorial Structures 707</a>

%F G.f.: A(x) = exp(A(x)^3*x + A(x^2)^3*x^2/2 + A(x^3)^3*x^3/3 +...), A(0)=1; also, A(x)^3 = Sum_{n>=0} A006964(n+1)*x^n. - _Paul D. Hanna_, Jul 13 2006

%p spec := [S,{S=Set(B),B=Prod(S,S,S,Z)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

%o (PARI) {a(n)=local(A=1+x+x*O(x^n));if(n==0,1,for(i=1,n, A=exp(sum(k=1,n,subst(x*A^3,x,x^k+x*O(x^n))/k)));polcoeff(A,n,x))} \\ _Paul D. Hanna_, Jul 13 2006

%Y Cf. A006964.

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000