login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. (1-sqrt(1-4*x-4*x^2))/ (2*(1+x)).
0

%I #18 Feb 15 2020 13:06:08

%S 0,1,2,18,216,3720,81360,2172240,68423040,2484639360,102190636800,

%T 4695453100800,238382331264000,13251891094041600,800600878273996800,

%U 52229642780899584000,3659347096696811520000,274040260725697449984000

%N E.g.f. (1-sqrt(1-4*x-4*x^2))/ (2*(1+x)).

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=682">Encyclopedia of Combinatorial Structures 682</a>

%F D-finite with recurrence: {a(1)=1, a(0)=0, a(2)=2, (-4*n^3-12*n^2-8*n)*a(n) +(-22*n-12-8*n^2)*a(n+1) +(-3*n-3)*a(n+2) +a(n+3) =0.

%F a(n) = n!*A052709(n). - _R. J. Mathar_, Oct 18 2013

%p spec := [S,{B=Prod(Z,C),S=Union(B,Z,C),C=Prod(S,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t With[{nn=20},CoefficientList[Series[(1-Sqrt[1-4x-4x^2])/(2(1+x)),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Feb 15 2020 *)

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000