login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052668 Expansion of e.g.f. 1/(1 - 3*x - x^3). 1

%I

%S 1,3,18,168,2088,32400,603360,13109040,325503360,9092684160,

%T 282219033600,9635476435200,358879494758400,14480588157235200,

%U 629228583138355200,29295027261916416000,1454816084780298240000

%N Expansion of e.g.f. 1/(1 - 3*x - x^3).

%H G. C. Greubel, <a href="/A052668/b052668.txt">Table of n, a(n) for n = 0..375</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=616">Encyclopedia of Combinatorial Structures 616</a>

%F E.g.f.: 1/(1-3*x-x^3).

%F a(n) = 3*n*a(n-1) + n*(n-1)*(n-2)*a(n-3), a(0)=1, a(1)=3, a(2)=18.

%F a(n) = (n!/15) * Sum_{alpha=RootOf(-1+3*_Z+_Z^3)} (4 + alpha + 2*alpha^2) * alpha^(-1-n).

%F a(n) = n!*A052541(n). - _R. J. Mathar_, Nov 27 2011

%p spec := [S,{S=Sequence(Union(Z,Z,Z,Prod(Z,Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t a[n_]:= a[n]= If[n<3, 3^n*n!, 3*n*a[n-1] + n*(n-1)*(n-2)*a[n-3]];

%t Table[a[n], {n, 0, 40}] (* _G. C. Greubel_, Sep 03 2022 *)

%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( 1/(1-3*x-x^3) ))); // _G. C. Greubel_, Sep 03 2022

%o (SageMath)

%o def A052668_list(prec):

%o P.<x> = PowerSeriesRing(QQ, prec)

%o return P( 1/(1-3*x-x^3) ).egf_to_ogf().list()

%o A052668_list(40) # _G. C. Greubel_, Sep 03 2022

%Y Cf. A052541.

%K easy,nonn

%O 0,2

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 01:05 EDT 2022. Contains 357082 sequences. (Running on oeis4.)