login
A052644
E.g.f. (1+3x-3x^2)/(1-x)^2.
1
1, 5, 12, 42, 192, 1080, 7200, 55440, 483840, 4717440, 50803200, 598752000, 7664025600, 105859353600, 1569209241600, 24845812992000, 418455797760000, 7469435990016000, 140852221526016000
OFFSET
0,2
FORMULA
E.g.f.: -(-3*x+3*x^2-1)/(-1+x)^2
Recurrence: {a(0)=1, a(1)=5, (-n^2-6*n-5)*a(n)+(n+4)*a(n+1)=0, a(2)=12}.
a(n) = (n+4)*n!, n>0.
G.f.: G(0) where G(k) = 1 + x*(k+1)*(k+4)/(1 - 1/(1 + (k+4)/G(k+1)) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 16 2012
From Amiram Eldar, Nov 06 2020: (Start)
Sum_{n>=0} 1/a(n) = 27/4- 2*e.
Sum_{n>=0} (-1)^n/a(n) = 27/4 - 16/e. (End)
MAPLE
spec := [S, {S=Prod(Sequence(Z), Union(Z, Z, Z, Sequence(Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1+3x-3x^2)/(1-x)^2, {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Nov 06 2014 *)
CROSSREFS
Cf. sequences with formula (n + k)*n! listed in A282466.
Sequence in context: A082189 A129795 A187916 * A052280 A195541 A006078
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved