login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. 1/((1-2*x^2)*(1-x)).
1

%I #23 Jun 03 2022 19:13:27

%S 1,1,6,18,168,840,10800,75600,1249920,11249280,228614400,2514758400,

%T 60833203200,790831641600,22230464256000,333456963840000,

%U 10691545632768000,181756275757056000,6549628300959744000

%N Expansion of e.g.f. 1/((1-2*x^2)*(1-x)).

%H Vincenzo Librandi, <a href="/A052634/b052634.txt">Table of n, a(n) for n = 0..200</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=580">Encyclopedia of Combinatorial Structures 580</a>

%F E.g.f.: 1/(-1+2*x^2)/(-1+x).

%F Recurrence: {a(1)=1, a(0)=1, a(2)=6, (12+2*n^3+12*n^2+22*n)*a(n) +(-2*n^2-10*n-12)*a(n+1) +(-n-3)*a(n+2) +a(n+3)=0}.

%F a(n) = (-1+Sum(1/2*(1+2*_alpha)*_alpha^(-1-n), with _alpha=RootOf(-1+2*_Z^2)))*n! .

%F a(n) = n!*[2^floor(n/2+1)-1].

%F a(n)=n!*A052551(n). - _R. J. Mathar_, Jun 03 2022

%p spec := [S,{S=Prod(Sequence(Prod(Z,Union(Z,Z))),Sequence(Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t With[{nn=20},CoefficientList[Series[1/((1-2x^2)(1-x)),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Aug 13 2014 *)

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000