login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. 1/(1-x-x^4).
1

%I #23 May 09 2023 12:27:45

%S 1,1,2,6,48,360,2880,25200,282240,3628800,50803200,758419200,

%T 12454041600,224172748800,4358914560000,90229531392000,

%U 1987665039360000,46595053080576000,1158829640736768000,30411275102208000000,839351192820940800000,24319288473733693440000

%N E.g.f. 1/(1-x-x^4).

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=538">Encyclopedia of Combinatorial Structures 538</a>

%F E.g.f.: -1/(-1+x^4+x).

%F Recurrence: {a(1)=1, a(0)=1, a(3)=6, a(2)=2, (-n^4-35*n^2-50*n-24-10*n^3)*a(n) +(-n-4)*a(n+3) +a(n+4)=0}

%F Sum(1/283*(27+36*_alpha^3+48*_alpha^2+64*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z^4+_Z))*n!

%F a(n) = n!*A003269(n+1). - _R. J. Mathar_, Nov 27 2011

%p spec := [S,{S=Sequence(Union(Z,Prod(Z,Z,Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%p a:= n-> n! * (Matrix([[1,1,0,0], [0,0,1,0], [0,0,0,1], [1,0,0,0]])^n)[1,1]: seq(a(n), n=0..20); # _Alois P. Heinz_, Jun 01 2009

%t With[{nn=20},CoefficientList[Series[1/(1-x-x^4),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Feb 02 2012 *)

%Y Row sums of A145142. - _Alois P. Heinz_, Jun 01 2009

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000