Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jun 03 2022 18:57:41
%S 1,1,2,6,48,360,2880,30240,362880,4717440,68947200,1117670400,
%T 19639065600,373621248000,7671689625600,168689993472000,
%U 3954407288832000,98525417582592000,2599363724525568000
%N Expansion of e.g.f.: (1-x^3)/(1-x-x^3).
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=531">Encyclopedia of Combinatorial Structures 531</a>
%F E.g.f.: (-1+x^3)/(-1+x+x^3)
%F Recurrence: {a(1)=1, a(0)=1, a(3)=6, a(2)=2, (-11*n-6-n^3-6*n^2)*a(n) +(-n-3)*a(n+2) +a(n+3)=0}
%F Sum(1/31*(-2*_alpha+9*_alpha^2+6)*_alpha^(-1-n), _alpha=RootOf(-1+_Z+_Z^3))*n!
%F a(n)=n!*A000930(n-1),n>0. - _R. J. Mathar_, Jun 03 2022
%p spec := [S,{S=Sequence(Prod(Z,Sequence(Prod(Z,Z,Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
%t With[{nn=20},CoefficientList[Series[(1-x^3)/(1-x-x^3),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Nov 07 2020 *)
%K easy,nonn
%O 0,3
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E Definition clarified by _Harvey P. Dale_, Nov 07 2020