login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(1+3^n)*n!.
0

%I #16 Jun 03 2022 18:59:50

%S 2,4,20,168,1968,29280,525600,11027520,264579840,7142929920,

%T 214280640000,7071181286400,254561568307200,9927888709939200,

%U 416971151460864000,18763699200390144000,900657519773147136000

%N (1+3^n)*n!.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=516">Encyclopedia of Combinatorial Structures 516</a>

%F E.g.f.: -2*(-1+2*x)/(-1+x)/(-1+3*x)

%F D-finite Recurrence: {a(1)=4, a(0)=2, (3*n^2+9*n+6)*a(n)+(-4*n-8)*a(n+1)+a(n+2)=0}

%F (1+3^n)*n!

%p spec := [S,{S=Union(Sequence(Z),Sequence(Union(Z,Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t With[{nn=20},CoefficientList[Series[-2(-1+2x)/(-1+x)/(-1+3x),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Jul 04 2021 *)

%K easy,nonn

%O 0,1

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000