login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-x)/(1-x-x^3-x^4+x^5).
2

%I #29 Sep 08 2022 08:44:59

%S 1,0,0,1,2,1,2,5,7,8,14,24,34,49,79,123,182,276,429,655,990,1513,2321,

%T 3537,5385,8229,12574,19175,29252,44670,68190,104043,158790,242398,

%U 369961,564604,861749,1315318,2007485,3063877,4676340,7137394,10893438

%N Expansion of (1-x)/(1-x-x^3-x^4+x^5).

%H Vincenzo Librandi, <a href="/A052532/b052532.txt">Table of n, a(n) for n = 0..1000</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=462">Encyclopedia of Combinatorial Structures 462</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,1,-1).

%F G.f.: (1 - x)/(1 - x - x^3 - x^4 + x^5).

%F a(n) = a(n-1) + a(n-3) + a(n-4) - a(n-5), with a(0)=1, a(1)=0, a(2)=0, a(3)=1, a(4)=2.

%F a(n) = Sum_{alpha = RootOf(1-x-x^3-x^4+x^5)} (1/8519)*(138 + 2003*alpha - 346*alpha^2 - 444*alpha^3 + 11*alpha^4)*alpha^(-1-n).

%p spec := [S,{S=Sequence(Prod(Z,Z,Z,Union(Z, Sequence(Z))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t CoefficientList[Series[(1-x)/(1-x-x^3-x^4+x^5), {x, 0, 50}], x] (* _Vincenzo Librandi_, Apr 28 2014 *)

%t LinearRecurrence[{1,0,1,1,-1},{1,0,0,1,2},50] (* _Harvey P. Dale_, May 12 2018 *)

%o (PARI) my(x='x+O('x^50)); Vec((1-x)/(1-x-x^3-x^4+x^5)) \\ _G. C. Greubel_, May 09 2019

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x-x^3-x^4+x^5) )); // _G. C. Greubel_, May 09 2019

%o (Sage) ((1-x)/(1-x-x^3-x^4+x^5)).series(x, 50).coefficients(x, sparse=False) # _G. C. Greubel_, May 09 2019

%o (GAP) a:=[1,0,0,1,2];; for n in [6..50] do a[n]:=a[n-1]+a[n-3]+a[n-4] -a[n-5]; od; a; # _G. C. Greubel_, May 09 2019

%K easy,nonn

%O 0,5

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E More terms from _James A. Sellers_, Jun 05 2000