Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 08 2022 08:44:59
%S 0,1,2,9,64,625,7056,89929,1284032,20351601,354648160,6736612201,
%T 138472331328,3061103815081,72391319923664,1823032999274985,
%U 48692068509655936,1374488205290880481,40877130077266074048
%N Number of labeled trees of height at most 4.
%H G. C. Greubel, <a href="/A052514/b052514.txt">Table of n, a(n) for n = 0..400</a>
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=60">Encyclopedia of Combinatorial Structures 60</a>
%F E.g.f.: x*exp(x*exp(x*exp(x*exp(x)))).
%p spec := [S,{T2=Prod(Z,Set(T3)),S=Prod(Z,Set(T1)), T4=Z, T3=Prod(Z,Set(T4)), T1=Prod(Z,Set(T2))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
%t With[{nn=20},CoefficientList[Series[x*Exp[x*Exp[x*Exp[x*Exp[x]]]],{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Jul 23 2018 *)
%o (PARI) my(x='x+O('x^20)); concat(0, Vec(serlaplace( x*exp(x*exp(x*exp(x*exp(x)))) ))) \\ _G. C. Greubel_, May 13 2019
%o (Magma) m:=20; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( x*Exp(x*Exp(x*Exp(x*Exp(x)))) )); [0] cat [Factorial(n)*b[n]: n in [1..m-1]]; // _G. C. Greubel_, May 13 2019
%o (Sage) m = 20; T = taylor(x*exp(x*exp(x*exp(x*exp(x)))), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # _G. C. Greubel_, May 13 2019
%Y Cf. A052513 (height at most 3).
%K easy,nonn
%O 0,3
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E Added "at most" in the title; by _Stanislav Sykora_, May 12 2012