The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052481 a(n) = 2^n*(binomial(n,2) + 1). 3
1, 2, 8, 32, 112, 352, 1024, 2816, 7424, 18944, 47104, 114688, 274432, 647168, 1507328, 3473408, 7929856, 17956864, 40370176, 90177536, 200278016, 442499072, 973078528, 2130706432, 4647288832, 10099884032, 21877489664, 47244640256 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n) is the generalized Euler number of an (n+2)-dimensional hypercube: (number of vertices) - (number of edges) + (number of faces) = A000079(n+2) - A001787(n+2) + A001788(n+1). - Amiram Eldar, Nov 08 2019
LINKS
Jonathan F. Mason and Richard H. Hudson, A Generalization of Euler's Formula and its Connection to Fibonacci Numbers, in: Frederic T. Howard (ed.), Applications of Fibonacci Numbers, Volume 9: Proceedings of The Tenth International Research Conference on Fibonacci Numbers and Their Applications, Springer, Dordrecht, 2004, pp. 177-185, alternative link.
FORMULA
For the sequence 1, 1, 1, 2, 8, 32, ... we have a(n) = 2^n*(n^2-5n+8)/8. - Paul Barry, Jun 26 2003
From R. J. Mathar, Jan 04 2011:
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3).
G.f.: (1-4*x+8*x^2)/(1-2*x)^3. (End)
E.g.f.: (1 + 2*x^2)*exp(2*x). - G. C. Greubel, May 16 2019
MATHEMATICA
Table[2^n (Binomial[n, 2]+1), {n, 0, 30}] (* Vincenzo Librandi, Dec 22 2016 *)
LinearRecurrence[{6, -12, 8}, {1, 2, 8}, 30] (* Harvey P. Dale, May 16 2019 *)
PROG
(Magma) [2^n*(Binomial(n, 2)+1): n in [0..30]]; // Vincenzo Librandi, Dec 22 2016
(PARI) {a(n) = 2^(n-1)*(n^2-n+2)}; \\ G. C. Greubel, May 16 2019
(Sage) [2^(n-1)*(n^2-n+2) for n in (0..30)] # G. C. Greubel, May 16 2019
(GAP) List([0..30], n-> 2^(n-1)*(n^2-n+2)) # G. C. Greubel, May 16 2019
CROSSREFS
Sequence in context: A302936 A227971 A267661 * A306292 A067897 A145682
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 16 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 04:26 EDT 2024. Contains 373468 sequences. (Running on oeis4.)