Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:44:59
%S 1,177,5111,60962,430729,2158099,8488095,27903044,79895265,205033333,
%T 481386807,1049954918,2152397897,4185095383,7774354687,13878462600,
%U 23923217921,39978597945,64985300791,103041066666,159757914953
%N 4-magic series constant.
%H G. C. Greubel, <a href="/A052461/b052461.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MagicConstant.html">Magic Constant.</a>
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
%F G.f.: x*(x^8 +167*x^7 +3386*x^6 +17697*x^5 +30074*x^4 +17697*x^3 +3386*x^2 +167*x +1)/(x-1)^10. - _Colin Barker_, Jun 06 2013
%F From _G. C. Greubel_, Sep 23 2019: (Start)
%F a(n) = n*(6*n^8 +15*n^6 +10*n^4 -1)/30.
%F E.g.f.: x*(30 +2625*x +22915*x^2 +51970*x^3 +43816*x^4 +16191*x^5 +2787* x^6 +216*x^7 +6*x^8)*exp(x)/30. (End)
%p seq(n*(6*n^8 +15*n^6 +10*n^4 -1)/30, n=1..25); # _G. C. Greubel_, Sep 23 2019
%t Table[n*(6*n^8 +15*n^6 +10*n^4 -1)/30, {n, 25}] (* _G. C. Greubel_, Sep 23 2019 *)
%o (PARI) a(n)=(6*n^9+15*n^7+10*n^5-n)/30 \\ _Charles R Greathouse IV_, Jun 06 2013
%o (Magma) [n*(6*n^8 +15*n^6 +10*n^4 -1)/30: n in [1..25]]; // _G. C. Greubel_, Sep 23 2019
%o (Sage) [n*(6*n^8 +15*n^6 +10*n^4 -1)/30 for n in (1..25)] # _G. C. Greubel_, Sep 23 2019
%o (GAP) List([1..25], n-> n*(6*n^8 +15*n^6 +10*n^4 -1)/30); # _G. C. Greubel_, Sep 23 2019
%Y Cf. A052459, A052460.
%K nonn,easy
%O 1,2
%A _Eric W. Weisstein_