Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #54 Nov 10 2019 01:40:08
%S 0,1,1,3,10,52,351,3714,63638,1912203,103882478,10338614868,
%T 1892863194064,639799762452639,400857034314325045,
%U 467526363203064793081,1019286659457016864347582,4170114225096278323394128049,32130213534058019378134295287305
%N Number of unlabeled simple connected bridged graphs on n nodes.
%C These are unlabeled connected graphs with spanning edge-connectivity 1, where the spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph. - _Gus Wiseman_, Sep 02 2019
%H Jean-François Alcover, <a href="/A052446/b052446.txt">Table of n, a(n) for n = 1..22</a>
%H Travis Hoppe and Anna Petrone, <a href="https://github.com/thoppe/Encyclopedia-of-Finite-Graphs">Encyclopedia of Finite Graphs</a>
%H T. Hoppe and A. Petrone, <a href="http://arxiv.org/abs/1408.3644">Integer sequence discovery from small graphs</a>, arXiv preprint arXiv:1408.3644 [math.CO], 2014.
%H T. Hoppe and A. Petrone, <a href="http://doi.org/10.1016/j.dam.2015.07.017">Integer sequence discovery from small graphs</a>, Discr. Appl. Math. 201 (2016) 172-181
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/k-Edge-ConnectedGraph.html">k-Edge-Connected Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BridgedGraph.html">Bridged Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ConnectedGraph.html">Connected Graph</a>
%H Gus Wiseman, <a href="/A052446/a052446.png">The a(2) = 1 through a(5) = 10 connected bridged graphs</a>
%F a(n) = A001349(n) - A007146(n).
%t A001349 = Cases[Import["https://oeis.org/A001349/b001349.txt", "Table"], {_, _}][[All, 2]];
%t A007146 = Cases[Import["https://oeis.org/A007146/b007146.txt", "Table"], {_, _}][[All, 2]] ;
%t a[n_] := A001349[[n + 1]] - A007146[[n]];
%t Array[a, 22] (* _Jean-François Alcover_, Nov 09 2019 *)
%Y Cf. other k-edge-connected unlabeled graph sequences A052446, A052447, A052448, A241703, A241704, A241705.
%Y Cf. A001349 (number of simple connected graphs).
%Y Cf. A007146 (number of simple connected bridgeless graphs).
%Y Cf. A263914 (number of simple bridgeless graphs).
%Y Cf. A263915 (number of simple bridged graphs).
%Y Column k = 1 of A263296.
%Y Row sums of A327077 if the first column is removed.
%Y BII-numbers of set-systems with spanning edge-connectivity 1 are A327111.
%Y The labeled version is A327071.
%Y Cf. A002494, A327069, A327074, A327109, A327144.
%K nonn,hard
%O 1,4
%A _Eric W. Weisstein_, May 08 2000
%E a(8) and a(9) and better description by _Eric W. Weisstein_, Nov 07 2010
%E a(10) from the Encyclopedia of Finite Graphs by _Travis Hoppe_ and _Anna Petrone_, Apr 22 2014
%E Additional terms from A001349 and A007146 by _Eric W. Weisstein_, Oct 29 2015
%E a(18)-a(22) from A001349 and A007146 by _Jean-François Alcover_, Nov 09 2019