login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers without 5 as a digit.
17

%I #48 Sep 08 2022 08:44:59

%S 0,1,2,3,4,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,26,27,28,

%T 29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,47,48,49,60,61,62,63,

%U 64,66,67,68,69,70,71,72,73,74,76,77,78,79,80,81,82,83,84,86,87,88,89

%N Numbers without 5 as a digit.

%H Reinhard Zumkeller, <a href="/A052413/b052413.txt">Table of n, a(n) for n = 1..10000</a>

%H M. F. Hasler, <a href="/wiki/Numbers_avoiding_certain_digits">Numbers avoiding certain digits</a>, OEIS wiki, Jan 12 2020

%H <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.

%F a(n) = replace digits d > 4 by d + 1 in base-9 representation of n - 1. - _Reinhard Zumkeller_, Oct 07 2014

%F Sum_{k>1} 1/a(n) = A082834 = 21.8346008... (Kempner series). - _Bernard Schott_, Jan 12 2020, edited by _M. F. Hasler_, Jan 13 2020

%p a:= proc(n) local l, m; l, m:= 0, n-1;

%p while m>0 do l:= (d->

%p `if`(d<5, d, d+1))(irem(m, 9, 'm')), l

%p od; parse(cat(l))/10

%p end:

%p seq(a(n), n=1..100); # _Alois P. Heinz_, Aug 01 2016

%t Select[Range[100],!MemberQ[IntegerDigits[#],5]&] (* _Harvey P. Dale_, Feb 20 2013 *)

%o (Magma) [ n: n in [0..89] | not 5 in Intseq(n) ]; // _Bruno Berselli_, May 28 2011

%o (sh) seq 0 1000 | grep -v 5; # _Joerg Arndt_, May 29 2011

%o (Haskell)

%o a052413 = f . subtract 1 where

%o f 0 = 0

%o f v = 10 * f w + if r > 4 then r + 1 else r where (w, r) = divMod v 9

%o -- _Reinhard Zumkeller_, Oct 07 2014

%o (PARI)

%o apply( {A052413(n)=fromdigits(apply(d->d+(d>4),digits(n-1,9)))}, [1..99]) \\ a(n)

%o select( {is_A052413(n)=!setsearch(Set(digits(n)),5)}, [0..99]) \\ used in A038613

%o next_A052413(n, d=digits(n+=1))={for(i=1,#d, d[i]==5&&return((1+n\d=10^(#d-i))*d)); n} \\ least a(k) > n; used in A038613. - _M. F. Hasler_, Jan 11 2020

%o (Python) # see the OEIS wiki page (cf. LINKS) for more programs

%o def A052413(n): n-=1; return sum(n//9**e%9*6//5*10**e for e in range(math.ceil(math.log(n+1,9)))) # _M. F. Hasler_, Jan 13 2020

%Y Cf. A004180, A004724, A038613 (subset of primes), A082834 (Kempner series).

%Y Cf. A052382 (without 0), A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).

%K base,easy,nonn

%O 1,3

%A _Henry Bottomley_, Mar 13 2000

%E Offset changed by _Reinhard Zumkeller_, Oct 07 2014