login
Numbers whose sum of digits is 6.
34

%I #20 Sep 08 2022 08:44:59

%S 6,15,24,33,42,51,60,105,114,123,132,141,150,204,213,222,231,240,303,

%T 312,321,330,402,411,420,501,510,600,1005,1014,1023,1032,1041,1050,

%U 1104,1113,1122,1131,1140,1203,1212,1221,1230,1302,1311,1320,1401,1410

%N Numbers whose sum of digits is 6.

%C A007953(a(n)) = 6; number of repdigits = #{6,33,222,111111} = A242627(6) = 4. - _Reinhard Zumkeller_, Jul 17 2014

%H Michael S. Branicky, <a href="/A052220/b052220.txt">Table of n, a(n) for n = 1..12376</a> (terms 1..924 from Vincenzo Librandi; all terms with <= 12 digits)

%t Select[Range[10^4], Total[IntegerDigits[#]] == 6 &] (* _Vincenzo Librandi_, Mar 07 2013 *)

%o (Magma) [n: n in [1..1500] | &+Intseq(n) eq 6 ]; // _Vincenzo Librandi_, Mar 07 2013

%o (Haskell)

%o a052220 n = a052220_list !! (n-1)

%o a052220_list = filter ((== 6) . a007953) [0..]

%o -- _Reinhard Zumkeller_, Jul 17 2014

%o (Python)

%o from sympy.utilities.iterables import multiset_permutations

%o def auptodigs(maxdigits):

%o alst = []

%o for d in range(1, maxdigits+1):

%o digset = "0"*(d-1) + "11111122233456"

%o for p in multiset_permutations(digset, d):

%o if p[0] != '0' and sum(map(int, p)) == 6:

%o alst.append(int("".join(p)))

%o return alst

%o print(auptodigs(4)) # _Michael S. Branicky_, Jun 15 2021

%Y Cf. A007953.

%Y Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

%Y Cf. A242614, A242627.

%K nonn,base,easy

%O 1,1

%A _Henry Bottomley_, Feb 01 2000

%E Offset changed from _Bruno Berselli_, Mar 07 2013