Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 12 2019 08:47:50
%S 1,0,0,9,54,0,0,52650,1890540,0,0,264480947280,57127543673760,0,0,
%T 1295355012667626301200,1678780080964997690732640,0,0,
%U 6577809875294796334824189267538944
%N Number of self-complementary 5-multigraphs on n nodes.
%D V. Jovovic, On the number of m-place relations (in Russian), Logiko-algebraicheskie konstruktsii, Tver, 1992, 59-66.
%D J. Xu, Ch. R. Wang, J. F. Wang, The theory of self-complementary k-multigraphs (in Chinese), Pure Appl. Math. [Chuncui Shuxue yu Yingyong Shuxue] 10 (1994), Special Issue, 18-22.
%H Andrew Howroyd, <a href="/A052108/b052108.txt">Table of n, a(n) for n = 1..100</a>
%H D. Wille, <a href="https://doi.org/10.1016/0095-8956(78)90034-5">Enumeration of self-complementary structures</a>, J. Comb. Theory B 25 (1978) 143-150.
%t permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
%t edges[v_List] := 4 Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + 2 Total[v];
%t a[n_] := Module[{s = 0}, If[Mod[n, 4] < 2, Do[s += permcount[4*p]* 6^edges[p]*If[OddQ[n], n*6^Length[p], 1], {p, IntegerPartitions[ Quotient[n, 4]]}]]; s/n!];
%t Array[a, 25] (* _Jean-François Alcover_, Sep 12 2019, after _Andrew Howroyd_ *)
%o (PARI)
%o permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
%o edges(v) = {4*sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, 2*v[i])}
%o a(n) = {my(s=0); if(n%4<2, forpart(p=n\4, s+=permcount(4*Vec(p))*6^edges(p)*if(n%2, n*6^#p, 1))); s/n!} \\ _Andrew Howroyd_, Sep 17 2018
%Y Cf. A000171, A053588, A053421.
%K nonn
%O 1,4
%A _Vladeta Jovovic_, Jan 20 2000
%E Terms a(21) and beyond from _Andrew Howroyd_, Sep 17 2018