Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 May 13 2022 10:10:04
%S 0,1,2,3,4,5,6,8,9,12,13,16,17,18,19,21,22,24,25,27,28,29,32,33,35,37,
%T 38,39,41,43,44,47,51,57,59,65,66,69,73,75,76,84,88,93,94,97,102,108,
%U 109,115,116,123,125,128,133,134,135,139,144,145,147,148,155,156,159
%N Numbers k such that the decimal expansion of k^3 contains no palindromic substring except single digits.
%C Leading zeros in substring are allowed so 52^3 = 140608 is rejected because 14{060}8 contains a palindromic substring.
%C Probabilistic analysis strongly suggests that this sequence is not finite. - _Franklin T. Adams-Watters_, Nov 15 2006
%H Michael S. Branicky, <a href="/A052063/b052063.txt">Table of n, a(n) for n = 1..10000</a>
%e 19^3 = 6859 -> substrings 68, 85, 59, 685, 859 and 6859 are all non-palindromic.
%t testQ@l_ :=
%t NoneTrue[Flatten[Table[Partition[l, n, 1], {n, 2, Length@l}], 1],
%t PalindromeQ];
%t f@nn_ := Select[Range@nn, testQ@IntegerDigits@(#^3) &]; f[300]
%t (* _Hans Rudolf Widmer_, May 13 2022 *)
%o (Python)
%o def nopal(s): return all(ss != ss[::-1] for ss in (s[i:j] for i in range(len(s)-1) for j in range(i+2, len(s)+1)))
%o def ok(n): return nopal(str(n**3))
%o print([k for k in range(160) if ok(k)]) # _Michael S. Branicky_, May 13 2022
%Y Cf. A052064, A052061, A052062, A050742.
%K nonn,base
%O 1,3
%A _Patrick De Geest_, Jan 15 2000