login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that decimal expansion of k^2 contains no palindromic substring except single digits.
7

%I #23 Oct 18 2019 21:24:18

%S 0,1,2,3,4,5,6,7,8,9,13,14,16,17,18,19,23,24,25,27,28,29,31,32,33,36,

%T 37,39,41,42,43,44,48,49,51,52,53,54,55,57,59,61,64,66,68,69,71,72,73,

%U 74,75,78,79,82,84,86,87,89,93,95,96,97,98,99,104,113,116,117,118,124

%N Numbers k such that decimal expansion of k^2 contains no palindromic substring except single digits.

%C Leading zeros in the substrings are allowed so 103^2 = 10609 is rejected because 1{060}9 contains a palindromic substring.

%C Probabilistic analysis strongly suggests that this sequence is not finite. - _Franklin T. Adams-Watters_, Nov 15 2006

%H Charles R Greathouse IV, <a href="/A052061/b052061.txt">Table of n, a(n) for n = 1..10001</a>

%e 118^2 = 13924 -> substrings 13, 39, 92, 24, 139, 392, 924, 1392, 3924 and 13924 are all non-palindromic.

%o (PARI) noPalSub(n)={my(d);local(digit);digit=eval(Vec(Str(n)));d = #digit;for(len=2,d,for(i=1,d-len+1,if(isPalSub(i,len), return(0))));1};

%o isPalSub(start,len)={my(b=start-1,e=start+len);for(j=1,len>>1,if(digit[b+j] != digit[e-j], return(0)));1};

%o for(n=0,200,if(noPalSub(n^2),print1(n", ")))

%Y Cf. A052062, A052063, A052064, A050741.

%K nonn,base

%O 1,3

%A _Patrick De Geest_, Jan 15 2000

%E Program and b-file from _Charles R Greathouse IV_, Sep 09 2009