login
Numbers k such that k^3 lacks the digit zero in its decimal expansion.
10

%I #20 Nov 23 2020 06:15:52

%S 1,2,3,4,5,6,7,8,9,11,12,13,14,15,17,18,19,21,23,24,25,26,27,28,29,31,

%T 32,33,35,36,38,39,41,44,45,46,49,51,53,54,55,56,57,58,61,62,64,65,66,

%U 68,71,72,75,76,77,78,81,82,83,85,88,91,92,95,96,97,98,104,105,108,111

%N Numbers k such that k^3 lacks the digit zero in its decimal expansion.

%C This sequence is infinite since A052427 is a subsequence. - _Amiram Eldar_, Nov 23 2020

%H Charles R Greathouse IV, <a href="/A052044/b052044.txt">Table of n, a(n) for n = 1..10000</a>

%H Rémy Sigrist, <a href="/A052044/a052044.png">Logarithmic scatterplot of (n, a(n+1)-a(n)) for n = 1..1000000</a>

%F a(n) = A052045(n)^(1/3). - _Amiram Eldar_, Nov 23 2020

%t Select[Range[120],DigitCount[#^3,10,0]==0&] (* _Harvey P. Dale_, Oct 24 2011 *)

%o (PARI) is(n)=vecmin(digits(n^3))>0 \\ _Charles R Greathouse IV_, Oct 11 2013

%Y Cubes: A052045, A051750, A051751, A051832, A051833, A052427.

%Y Squares: A052040, A052041, A052042, A052043.

%K nonn,base

%O 1,2

%A _Patrick De Geest_, Dec 15 1999