login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,m) = Nim-product of n and m, read by rows, 0<=m<=n.
4

%I #13 Mar 30 2012 16:48:43

%S 0,0,1,0,2,3,0,3,1,2,0,4,8,12,6,0,5,10,15,2,7,0,6,11,13,14,8,5,0,7,9,

%T 14,10,13,3,4,0,8,12,4,11,3,7,15,13,0,9,14,7,15,6,1,8,5,12,0,10,15,5,

%U 3,9,12,6,1,11,14,0,11,13,6,7,12,10,1,9,2,4,15

%N Triangle T(n,m) = Nim-product of n and m, read by rows, 0<=m<=n.

%D E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 60.

%D J. H. Conway, On Numbers and Games, Academic Press, p. 52.

%H R. J. Mathar, <a href="/A051910/b051910.txt">Table of n, a(n) for n = 0..3320</a>

%H <a href="/index/Ni#Nimmult">Index entries for sequences related to Nim-multiplication</a>

%F T(n,m) = A051775(n,m) = A051776(n,m).

%e Triangle starts

%e 0;

%e 0, 1;

%e 0, 2, 3;

%e 0, 3, 1, 2;

%e 0, 4, 8, 12, 6;

%e 0, 5, 10, 15, 2, 7;

%e 0, 6, 11, 13, 14, 8, 5;

%e 0, 7, 9, 14, 10, 13, 3, 4;

%e 0, 8, 12, 4, 11, 3, 7, 15, 13;

%p We continue from A003987: to compute a Nim-multiplication table using (a) an addition table AT := array(0..NA, 0..NA) and (b) a nimsum procedure for larger values; MT := array(0..N,0..N); for a from 0 to N do MT[a,0] := 0; MT[0,a] := 0; MT[a,1] := a; MT[1,a] := a; od: for a from 2 to N do for b from a to N do t1 := {}; for i from 0 to a-1 do for j from 0 to b-1 do u1 := MT[i,b]; u2 := MT[a,j];

%p if u1<=NA and u2<=NA then u12 := AT[u1,u2]; else u12 := nimsum(u1,u2); fi; u3 := MT[i,j]; if u12<=NA and u3<=NA then u4 := AT[u12,u3]; else u4 := nimsum(u12,u3); fi; t1 := { op(t1), u4}; #t1 := { op(t1), AT[ AT[ MT[i,b], MT[a,j] ], MT[i,j] ] }; od; od;

%p t2 := sort(convert(t1,list)); j := nops(t2); for i from 1 to nops(t2) do if t2[i] <> i-1 then j := i-1; break; fi; od; MT[a,b] := j; MT[b,a] := j; od; od;

%Y Cf. A051776, A003987, A051775, A051911.

%K tabl,nonn,easy,nice

%O 0,5

%A _N. J. A. Sloane_, Dec 20 1999