login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways of placing n nonattacking queens on an n X n toroidal chessboard.
10

%I #76 Apr 13 2024 22:59:37

%S 1,0,0,0,10,0,28,0,0,0,88,0,4524,0,0,0,140692,0,820496,0,0,0,

%T 128850048,0,1957725000,0,0,0,605917055356,0,13404947681712,0,0,0

%N Number of ways of placing n nonattacking queens on an n X n toroidal chessboard.

%C The sequence has been computed up to n = 23 by Rivin, Vardi & Zimmermann, see p. 637 of their paper from 1994. Further terms were calculated by the submitter, Dec 17 1999 and Jan 11 2001.

%C a(n) is divisible by n.

%C Only terms indexed by odd numbers coprime to 3 are nonzero, therefore A007705(n) = a(2n+1) is the main entry. - _M. F. Hasler_, Jul 01 2019

%C From _Eduard I. Vatutin_, Nov 27 2023: (Start)

%C For n <= 11 all solutions can be found using a knight moving with some displacements dx and dy starting from some cell with coordinates (x,y): (x,y) -> (x+dx,y+dy) -> (x+2*dx,y+2*dy) -> ... -> (x,y) (all operations modulo n). For n >= 13 some solutions are same, but not all (see examples).

%C All solutions of n-queens problem on toroidal chessboard are also solutions of n-queens problem on classical chessboard; the converse is not true, so a(n) <= A000170(n).

%C (End)

%H M. R. Engelhardt, <a href="http://dx.doi.org/10.1016/j.disc.2007.01.007">A group-based search for solutions of the n-queens problem</a>, Discr. Math., 307 (2007), 2535-2551.

%H Vaclav Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, 2013, p. 62-63.

%H Kevin Pratt, <a href="https://arxiv.org/abs/1609.09585">Closed-Form Expressions for the n-Queens Problem and Related Problems</a>, arXiv:1609.09585 [cs.DM], 2016.

%H I. Rivin, I. Vardi and P. Zimmermann, <a href="http://www.jstor.org/stable/2974691">The n-queens problem</a>, Amer. Math. Monthly, 101 (1994), 629-639.

%F a(n) = A071607((n-1)/2) * n for odd n. - _Eduard I. Vatutin_, Nov 27 2023, corrected Apr 10 2024

%e From _Eduard I. Vatutin_, Nov 27 2023: (Start)

%e n=5 (all 10 solutions are shown below):

%e +-----------+ +-----------+ +-----------+ +-----------+ +-----------+

%e | Q . . . . | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |

%e | . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | Q . . . . |

%e | . . . . Q | | . Q . . . | | Q . . . . | | . . Q . . | | . . . Q . |

%e | . Q . . . | | . . . . Q | | . . Q . . | | Q . . . . | | . Q . . . |

%e | . . . Q . | | . . Q . . | | . . . . Q | | . . . Q . | | . . . . Q |

%e +-----------+ +-----------+ +-----------+ +-----------+ +-----------+

%e +-----------+ +-----------+ +-----------+ +-----------+ +-----------+

%e | . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | . . . . Q |

%e | . . . . Q | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |

%e | . Q . . . | | . . Q . . | | . . . . Q | | . . . Q . | | Q . . . . |

%e | . . . Q . | | . . . . Q | | . . Q . . | | Q . . . . | | . . . Q . |

%e | Q . . . . | | . Q . . . | | Q . . . . | | . . Q . . | | . Q . . . |

%e +-----------+ +-----------+ +-----------+ +-----------+ +-----------+

%e n=7:

%e +---------------+

%e | Q . . . . . . |

%e | . . . Q . . . |

%e | . . . . . . Q |

%e | . . Q . . . . |

%e | . . . . . Q . |

%e | . Q . . . . . |

%e | . . . . Q . . |

%e +---------------+

%e n=11:

%e +-----------------------+

%e | Q . . . . . . . . . . |

%e | . . Q . . . . . . . . |

%e | . . . . Q . . . . . . |

%e | . . . . . . Q . . . . |

%e | . . . . . . . . Q . . |

%e | . . . . . . . . . . Q |

%e | . Q . . . . . . . . . |

%e | . . . Q . . . . . . . |

%e | . . . . . Q . . . . . |

%e | . . . . . . . Q . . . |

%e | . . . . . . . . . Q . |

%e +-----------------------+

%e n=13 (first example can be found using a knight moving from cell (1,1) with dx=1 and dy=2, second example can't be obtained in the same way):

%e +---------------------------+ +---------------------------+

%e | Q . . . . . . . . . . . . | | Q . . . . . . . . . . . . |

%e | . . Q . . . . . . . . . . | | . . Q . . . . . . . . . . |

%e | . . . . Q . . . . . . . . | | . . . . Q . . . . . . . . |

%e | . . . . . . Q . . . . . . | | . . . . . . Q . . . . . . |

%e | . . . . . . . . Q . . . . | | . . . . . . . . . . . Q . |

%e | . . . . . . . . . . Q . . | | . . . . . . . . . Q . . . |

%e | . . . . . . . . . . . . Q | | . . . . . . . . . . . . Q |

%e | . Q . . . . . . . . . . . | | . . . . . Q . . . . . . . |

%e | . . . Q . . . . . . . . . | | . . . Q . . . . . . . . . |

%e | . . . . . Q . . . . . . . | | . Q . . . . . . . . . . . |

%e | . . . . . . . Q . . . . . | | . . . . . . . Q . . . . . |

%e | . . . . . . . . . Q . . . | | . . . . . . . . . . Q . . |

%e | . . . . . . . . . . . Q . | | . . . . . . . . Q . . . . |

%e +---------------------------+ +---------------------------+

%e (End)

%Y See A007705, which is the main entry for this sequence.

%Y Cf. A000170, A071607.

%K nonn,nice,hard,more

%O 1,5

%A _Matthias Engelhardt_, Dec 17 1999

%E Term a(31) added from A007705 by _Vaclav Kotesovec_, Aug 25 2012