Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Aug 06 2024 22:31:47
%S 1,14,69,224,574,1260,2478,4488,7623,12298,19019,28392,41132,58072,
%T 80172,108528,144381,189126,244321,311696,393162,490820,606970,744120,
%U 904995,1092546,1309959,1560664
%N Partial sums of A051798.
%C Convolution of triangular numbers (A000217) and 11-gonal numbers (A051682). [_Bruno Berselli_, Jul 21 2015]
%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
%D Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-16.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F a(n) = C(n+4, 4)*(9n+5)/5.
%F G.f.: (1+8*x)/(1-x)^6.
%t Accumulate[Table[(n+1)(n+2)(n+3)(9n+4)/24,{n,0,40}]] (* _Harvey P. Dale_, Aug 19 2012 *)
%Y Cf. A051798; A000217, A051682.
%Y Cf. A093644((9, 1) Pascal, column m=5).
%Y Cf. A050405.
%K nonn,easy
%O 0,2
%A _Barry E. Williams_, Dec 14 1999