login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051736
Number of 3 X n (0,1)-matrices with no consecutive 1's in any row or column.
9
1, 5, 17, 63, 227, 827, 2999, 10897, 39561, 143677, 521721, 1894607, 6879979, 24983923, 90725999, 329460929, 1196397873, 4344577397, 15776816033, 57291635519, 208047769363, 755500774443, 2743511349031, 9962735709201, 36178491743225, 131377896967213, 477083233044745
OFFSET
0,2
COMMENTS
Also the number of independent vertex sets and vertex covers in the 3 X n grid graph. - Eric W. Weisstein, Sep 21 2017
LINKS
N. J. Calkin and H. S. Wilf, The number of independent sets in a grid graph, preprint, SIAM J. Discrete Math., 11(1), 54-60.
N. J. Calkin and H. S. Wilf, The number of independent sets in a grid graph, SIAM J. Discrete Math, 11 (1998) 54-60.
Reinhardt Euler, The Fibonacci Number of a Grid Graph and a New Class of Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.6.
Eric Weisstein's World of Mathematics, Grid Graph
Eric Weisstein's World of Mathematics, Independent Vertex Set
Eric Weisstein's World of Mathematics, Vertex Cover
FORMULA
a(n) = 2*a(n-1) + 6*a(n-2) - a(n-4).
G.f.: (1+x)*(1+2*x-x^2)/(1-2*x-6*x^2+x^4). - Philippe Deléham, Sep 07 2006
EXAMPLE
There are five 3 X 1 (0,1)-matrices with no consecutive 1's:
0 0 0
0 0 1
0 1 0
1 0 0
1 0 1
There are 17 3 X 2 (0,1)-matrices with no consecutive 1's:
0 0, 0 1, 0 0, 0 0, 0 1, 1 0, 1 0, 1 0, 0 0, 0 1, 0 0, 0 1, 0 0, 0 1, 0 0, 1 0, 1 0
0 0, 0 0, 0 1, 0 0, 0 0, 0 0, 0 1, 0 0, 1 0, 1 0, 1 0, 1 0, 0 0, 0 0, 0 1, 0 0, 0 1
0 0, 0 0, 0 0, 0 1, 0 1, 0 0, 0 0, 0 1, 0 0, 0 0, 0 1, 0 1, 1 0, 1 0, 1 0, 1 0, 1 0
MATHEMATICA
LinearRecurrence[{2, 6, 0, -1}, {1, 5, 17, 63}, 40] (* Harvey P. Dale, Mar 05 2013 *)
CoefficientList[Series[(1 + 3 x + x^2 - x^3)/(1 - 2 x - 6 x^2 + x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
Table[-RootSum[1 - 6 #1^2 - 2 #1^3 + #1^4 &, 263 #1^n - 657 #1^(n + 1) - 331 #1^(n + 2) + 81 #1^(n + 3) &]/1994, {n, 0, 20}] (* Eric W. Weisstein, Sep 21 2017 *)
PROG
(Haskell)
a051736 n = a051736_list !! (n-1)
a051736_list = 1 : 5 : 17 : 63 : zipWith (-) (map (* 2) $ drop 2 $
zipWith (+) (map (* 3) a051736_list) (tail a051736_list)) a051736_list
-- Reinhard Zumkeller, Apr 02 2012
(PARI) Vec((1+3*x+x^2-x^3)/(1-2*x-6*x^2+x^4)+O(x^50)) \\ Michel Marcus, Sep 17 2014
CROSSREFS
Row 3 of A089934. Row sums of A371967.
Cf. A051737.
Sequence in context: A273704 A146444 A128073 * A301560 A099528 A149667
KEYWORD
easy,nonn,nice
AUTHOR
Stephen G Penrice, Dec 06 1999
EXTENSIONS
More terms from James A. Sellers, Dec 08 1999
More terms from Michel Marcus, Sep 17 2014
Offset fixed by Eric W. Weisstein, Sep 21 2017
STATUS
approved