login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of square of g.f. for A051573.
2

%I #12 Dec 15 2017 07:27:14

%S 1,2,3,6,11,26,58,142,351,890,2282,5948,15624,41442,110703,297676,

%T 804892,2187490,5971392,16366734,45021391,124253828,343956858,

%U 954760502,2656946827,7411140120,20716895918,58027609028,162837485745

%N Expansion of square of g.f. for A051573.

%H G. C. Greubel, <a href="/A051603/b051603.txt">Table of n, a(n) for n = 0..1000</a>

%t (* r = A000081 *) r[n_] := r[n] = If[n<2, n, Sum[DivisorSum[j, #*r[#]&] * r[n-j], {j, 1, n-1}]/(n-1)]; b[n_] := b[n] = -If[n<0, 1, Sum[b[n-i] * r[i+1], {i, 1, n+1}]]; B[n_] := Sum[b[i]*x^i, {i, 0, n}]; T[n_, k_] := Coefficient[B[n]^k, x, n-k]; a[n_] := T[n+2, 2]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Mar 23 2017, after _Alois P. Heinz_ *)

%Y Cf. A052250, A051573.

%K nonn

%O 0,2

%A _David Broadhurst_