login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051449
Number of fibered rational knots with n crossings.
3
1, 1, 1, 2, 3, 4, 7, 10, 16, 25, 40, 62, 101, 159, 257, 410, 663, 1062, 1719, 2764, 4472, 7209, 11664, 18828, 30465, 49221, 79641, 128746, 208315, 336872, 545071, 881638, 1426520, 2307665, 3733880, 6040746, 9774133, 15813587, 25586921, 41398418
OFFSET
3,4
FORMULA
G.f.: (x^2/2)*((-x-x^2)/(x^4+2x^3+x^2-1) + (-x-x^2)/(x^4+x^2-1)).
G.f.: -x^3*(x^3+x-1)*(1+x)^2 / ( (1+x+x^2)*(x^2+x-1)*(x^4+x^2-1) ).
EXAMPLE
a(7)=3 because there are 3 fibered rational knots with 7 crossings: 7_1, 7_6 and 7_7 (in Alexander-Briggs notation).
MATHEMATICA
f[x_] = -(x+1)^2*(x^3+x-1) / ((x^2+x-1)*(x^2+x+1)*(x^4+x^2-1)); CoefficientList[ Series[f[x], {x, 0, 39}], x]; Table[a[n], {n, 0, 20}](* Jean-François Alcover, Nov 21 2011 *)
LinearRecurrence[{0, 2, 2, 1, -2, -2, -2, -1}, {1, 1, 1, 2, 3, 4, 7, 10}, 40] (* Harvey P. Dale, Dec 27 2015 *)
CROSSREFS
Sequence in context: A202411 A293161 A235648 * A018143 A373783 A281839
KEYWORD
easy,nonn,nice
AUTHOR
Alexander Stoimenow (stoimeno(AT)math.toronto.edu)
EXTENSIONS
More terms from James A. Sellers
STATUS
approved