login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0)=1; thereafter, a(m+1) = Sum_{k=0..m} k!*a(m-k).
17

%I #82 Jul 10 2023 10:29:35

%S 1,1,2,5,15,54,235,1237,7790,57581,489231,4690254,49986715,585372877,

%T 7463687750,102854072045,1522671988215,24093282856182,405692082526075,

%U 7242076686885157,136599856992122366,2714409550073698925

%N a(0)=1; thereafter, a(m+1) = Sum_{k=0..m} k!*a(m-k).

%C a(n) = number of permutations on [n] that contain a 132 pattern only as part of a 4132 pattern. For example, a(4) = 15 counts the 14 132-avoiding permutations on [4] (Catalan numbers A000108) and 4132.

%C a(n) is the number of permutations on [n] that contain a (scattered) 342 pattern only as part of a 1342 pattern. For example, 412635 fails because 463 is an offending 342 pattern (= 231 pattern).

%C This sequence gives the number of permutations of {1,2,...,n} such that the elements of each cycle of the permutation form an interval. - _Michael Albert_, Dec 14 2004

%C Starting (1, 2, 5, 15, ...) = row sums of triangle A143965. - _Gary W. Adamson_, Apr 10 2009

%C Number of compositions of n where there are (k-1)! sorts of part k. - _Joerg Arndt_, Aug 04 2014

%H Vincenzo Librandi and Vaclav Kotesovec, <a href="/A051295/b051295.txt">Table of n, a(n) for n = 0..448</a> (first 100 terms from Vincenzo Librandi)

%H David Callan, <a href="http://arxiv.org/abs/math/0507169">A combinatorial interpretation of the eigensequence for composition</a>, arXiv:math/0507169 [math.CO], 2005.

%H David Callan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Callan/callan96.html">A Combinatorial Interpretation of the Eigensequence for Composition</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.4.

%H Stefan Forcey, Aaron Lauve and Frank Sottile, <a href="http://www.combinatorics.net/Annals/Abstract/17_1_105.aspx">Cofree compositions of coalgebras</a>, Annals of Combinatorics 17 (1) pp. 105-130 March, 2013.

%H Richard J. Martin, and Michael J. Kearney, <a href="http://dx.doi.org/10.1007/s00493-014-3183-3">Integral representation of certain combinatorial recurrences</a>, Combinatorica: 35:3 (2015), 309-315.

%H Lara Pudwell, <a href="https://doi.org/10.37236/301">Enumeration Schemes for Permutations Avoiding Barred Patterns</a>, El. J. Combinat. 17 (1) (2010) R29.

%F It appears that the INVERT transform of factorial numbers A000142 gives 1, 2, 5, 15, 54, 235, 1237, ... - _Antti Karttunen_, May 30 2003

%F This is true: translating the defining recurrence to a generating function identity yields A(x)= 1/(1 - (0!x + 1!x^2 + 2!x^3 + ...)) which is the INVERT formula.

%F In other words: let F(x) = Sum_{n>=0} n!*x^n then the g.f. is 1/(1-x*F(x)), cf. A052186 (g.f. F(x)/(1+x*F(x))). - _Joerg Arndt_, Apr 25 2011

%F a(n) = Sum_{k>=0} A084938(n, k). - _Philippe Deléham_, Feb 05 2004

%F G.f. A(x) satisfies: A(x) = (1-x)*A(x)^2 - x^2*A'(x). - _Paul D. Hanna_, Aug 02 2008

%F G.f.: A(x) = 1/(1-x/(1-1*x/(1-1*x/(1-2*x/(1-2*x/(1-3*x/(1-3*x...))))))))) (continued fraction). - _Paul Barry_, Sep 25 2008

%F From _Gary W. Adamson_, Jul 22 2011: (Start)

%F a(n) = upper left term in M^n, M = an infinite square production matrix in which a column of 1's is prepended to Pascal's triangle, as follows:

%F 1, 1, 0, 0, 0, ...

%F 1, 1, 1, 0, 0, ...

%F 1, 1, 2, 1, 0, ...

%F 1, 1, 3, 3, 1, ...

%F ...

%F Also, a(n+1) = sum of top row terms of M^n. (End)

%F G.f.: 1+x/(U(0)-x) where U(k) = 1 + x*k - x*(k+1)/U(k+1); (continued fraction, 1-step). - _Sergei N. Gladkovskii_, Oct 10 2012

%F G.f.: 1/(U(0) - x) where U(k) = 1 - x*(k+1)/(1 - x*(k+1)/U(k+1)); (continued fraction, 2-step). - _Sergei N. Gladkovskii_, Nov 12 2012

%F a(n) ~ (n-1)! * (1 + 2/n + 7/n^2 + 31/n^3 + 165/n^4 + 1025/n^5 + 7310/n^6 + 59284/n^7 + 543702/n^8 + 5618267/n^9 + 65200918/n^10), for coefficients see A260532. - _Vaclav Kotesovec_, Jul 28 2015

%e a[ 4 ]=15=a[ 3 ]*0!+a[ 2 ]*1!+a[ 1 ]*2!+a[ 0 ]*3!=5*1+2*1+1*2+1*6.

%e As to matrix M, a(3) = 5 since the top row of M^n = (5, 5, 4, 1), with a(4) = 15 = (5 + 5 + 4 + 1).

%p a := proc(n) option remember; `if`(n<2, 1, add(a(n-j-1)*j!, j=0..n-1)) end proc: seq(a(n), n=0..30); # _Vaclav Kotesovec_, Jul 28 2015

%t Table[Coefficient[Series[E^x/(E^x-ExpIntegralEi[x]),{x,Infinity,20}],x,-n],{n,0,20}] (* _Vaclav Kotesovec_, Feb 22 2014 *)

%o (PARI) {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=(1+x^2*deriv(A)/A)/(1-x));polcoeff(A,n)} \\ _Paul D. Hanna_, Aug 02 2008

%Y Cf. A051296, A260532.

%Y Row sums of A084938.

%Y Cf. A143965. - _Gary W. Adamson_, Apr 10 2009

%K easy,nonn

%O 0,3

%A _Leroy Quet_

%E More terms from _Vincenzo Librandi_, Feb 23 2013