login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of monotone Boolean functions of n variables with 10 mincuts.
35

%I #15 Dec 17 2022 12:43:19

%S 0,0,0,0,0,2,1067771,43506231489,501425871595264,2719674203584968630,

%T 9172837864705015158979,22524989249381408262409893,

%U 44328073635887914351462953684,74381256243136645820404637874910

%N Number of monotone Boolean functions of n variables with 10 mincuts.

%D J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.

%D V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)

%D V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, Belgrade, 1999, in preparation.

%H K. S. Brown, <a href="http://www.mathpages.com/home/kmath030.htm">Dedekind's Problem</a>

%H Vladeta Jovovic, <a href="/A047707/a047707.pdf">Illustration for A016269, A047707, A051112-A051118</a>

%H Goran Kilibarda and Vladeta Jovovic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL7/Kilibarda/kili2.html">Antichains of Multisets</a>, J. Integer Seqs., Vol. 7, 2004.

%H <a href="/index/Bo#Boolean">Index entries for sequences related to Boolean functions</a>

%Y Cf. A016269, A047707, A051112, A051113, A051114, A051115, A051116, A051117.

%K nonn

%O 0,6

%A _Vladeta Jovovic_, Goran Kilibarda, and Zoran Maksimovic