login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that x^60 = -2 has a solution mod p.
2

%I #18 Apr 12 2023 08:21:44

%S 2,3,43,59,83,89,107,113,179,227,233,251,257,283,307,347,353,419,443,

%T 467,499,563,587,593,617,643,659,683,739,827,947,971,1019,1049,1097,

%U 1163,1187,1193,1217,1259,1283,1289,1307,1427,1433,1459,1499,1523,1553,1579

%N Primes p such that x^60 = -2 has a solution mod p.

%C Complement of A216775 relative to A000040. - _Vincenzo Librandi_, Sep 17 2012

%H Vincenzo Librandi, <a href="/A051099/b051099.txt">Table of n, a(n) for n = 1..1000</a>

%t ok[p_]:= Reduce[Mod[x^60 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* _Vincenzo Librandi_, Sep 16 2012 *)

%o (PARI) /* see A051071 */

%o (Magma) [p: p in PrimesUpTo(1600) | exists(t){x : x in ResidueClassRing(p) | x^60 eq - 2}]; // _Vincenzo Librandi_, Sep 16 2012

%Y Cf. A000040, A216775.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_

%E More terms from _Joerg Arndt_, Jul 27 2011