login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes p such that x^12 = -2 has a solution mod p.
2

%I #19 Sep 08 2022 08:44:59

%S 2,3,11,43,59,83,89,107,113,131,179,227,233,251,257,281,283,307,347,

%T 353,419,443,467,491,499,563,587,593,601,617,643,659,683,691,739,811,

%U 827,881,947,971,1019,1049,1051,1091,1097,1163,1187,1193,1217,1259,1283,1289,1307

%N Primes p such that x^12 = -2 has a solution mod p.

%C Complement of A216737 relative to A000040. - _Vincenzo Librandi_, Sep 16 2012

%H Vincenzo Librandi, <a href="/A051075/b051075.txt">Table of n, a(n) for n = 1..1000</a>

%t ok[p_]:= Reduce[Mod[x^12 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* _Vincenzo Librandi_, Sep 15 2012 *)

%o (PARI)

%o forprime(p=2, 2000, if([]~!=polrootsmod(x^12+2, p), print1(p, ", "))); print();

%o /* _Joerg Arndt_, Jun 24 2012 */

%o (Magma) [p: p in PrimesUpTo(1310) | exists(t){x : x in ResidueClassRing(p) | x^12 eq - 2}]; // _Vincenzo Librandi_, Sep 15 2012

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_

%E More terms from _Joerg Arndt_, Jul 27 2011