|
|
A051055
|
|
'Connected' alternating sign n X n matrices, i.e., not made from smaller blocks.
|
|
2
|
|
|
0, 1, 0, 1, 2, 59, 1092, 51412, 3420384, 382912420, 68021283668, 19474443244283, 9025228384142396, 6825775070789988992, 8486240219059861120000, 17454179683586670023001218, 59698062960218238908531091872
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
A003827 factors out the singleton components only, but many alternating sign matrices can be decomposed into larger pieces.
|
|
LINKS
|
|
|
FORMULA
|
Sum_{k>=0} a(k)z^k/k!^2 = log(Sum_{k>=0} r(k)z^k/k!^2) where r(k) is the k-th Robbins number A005130(n).
a(n) = r(n) - (1/n)*Sum_{k=0..n-1} k*binomial(n, k)^2*r(n-k)*a(k), n > 0, a(0)=0, where r(k) is the k-th Robbins number A005130(n). - Vladeta Jovovic, Mar 16 2000
|
|
EXAMPLE
|
a(4)=2 because of the alternating sign matrices {{0,1,0,0},{1,-1,1,0},{0,1,-1,1},{0,0,1,0}} and {{0,0,1,0},{0,1,-1,1},{1,-1,1,0},{0,1,0,0}}.
|
|
MATHEMATICA
|
r[n_] = Product[(3k+1)!/(n+k)!, {k, 0, n-1}] ; a[n_] := a[n] = r[n] - (1/n)*Sum[k*Binomial[n, k]^2*r[n-k]*a[k], {k, 0, n-1}]; a[0] = 0; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Aug 01 2011, after Vladeta Jovovic *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nice,easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|