%I #16 Oct 17 2019 14:25:45
%S 728,2985983,5088447,128787624,192100032,387420488,738763263,
%T 1030300999,1771560999,12230590463,29704593672,52861038776,
%U 177978515624,224866629440,308367729215,659184444926,1586874322943
%N Consider the Diophantine equation x^3 + y^3 = z^3 - 1 (x < y < z) or 'Fermat near misses'. Arrange solutions by increasing values of z. Sequence gives values of x^3 + y^3 = z^3 - 1.
%D Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
%D David Wells, "Curious and Interesting Numbers", Revised Ed. 1997, Penguin Books, On number "729", p. 147.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DiophantineEquation3rdPowers.html">Diophantine Equation - 3rd Powers</a>
%e 575^3 + 2292^3 = 2304^3 - 1 = 12230590463.
%Y Cf. A050787, A050788, A050789.
%K nonn
%O 1,1
%A _Patrick De Geest_, Sep 15 1999
%E More terms from _Jud McCranie_, Dec 25 2000