login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 153*2^k-1 is prime.
0

%I #24 Jan 17 2019 10:08:17

%S 3,4,6,7,10,11,12,19,20,22,23,39,66,106,120,124,151,312,411,447,474,

%T 507,574,671,787,826,979,1690,1954,2047,3003,4323,4426,5903,6267,6846,

%U 14550,17470,21520,31711,36724,45291,45654,51778,55420,63439,68451,78423,109696,125128,130710,169836,192900,195028,383083,545716

%N Numbers k such that 153*2^k-1 is prime.

%H Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1.html">List of primes k.2^n + 1 for k < 300</a>

%H Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k.2^n - 1 for k < 300</a>

%H Kosmaj, <a href="http://www.15k.org/riesellist.html">Riesel list k<300</a>.

%H <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a>

%t Select[Range[1000], PrimeQ[153*2^# - 1] & ] (* _Robert Price_, Dec 23 2018 *)

%o (PARI) is(n)=ispseudoprime(153*2^n-1) \\ _Charles R Greathouse IV_, Jun 13 2017

%K hard,nonn

%O 1,1

%A _N. J. A. Sloane_, Dec 29 1999

%E More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008

%E a(49)-a(56) from the Wilfrid Keller link by _Robert Price_, Dec 23 2018