Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #46 Oct 11 2024 12:44:00
%S 0,0,0,0,1,0,0,0,0,0,0,2,1,2,0,0,0,1,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,
%T 0,0,0,3,2,3,1,3,2,3,0,0,0,2,2,1,1,2,2,0,0,0,1,0,2,1,1,1,2,0,1,0,0,0,
%U 0,0,1,1,1,1,0,0,0,0,0,2,1,2,0,2,1,2,0,2,1,2,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0
%N Square array A(x,y), read by antidiagonals, where A(x,y) = 0 if (x AND y) = 0, otherwise A(x,y) = 1+A(x XOR y, 2*(x AND y)).
%C Array is symmetric and is read by antidiagonals: (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), etc. - _Antti Karttunen_, Sep 04 2023
%C Comment from _N. J. A. Sloane_, Jun 21 2011: Apparently the same as the following sequence. Infinite square array read by antidiagonals, where T(m,n) = length of longest carry propagation when u and v are added in binary, for u >= 0, v >= 0.
%C See A192054 for definition of carry propagation. For example, T(3,5) = 3, since adding 011 + 101 in binary, the initial 1 propagates three places.
%H Antti Karttunen, <a href="/A050602/b050602.txt">Table of n, a(n) for n = 0..33152; the first 257 antidiagonals, flattened</a>
%H Beeler, M., Gosper, R. W. and Schroeppel, R., <a href="http://www.inwap.com/pdp10/hbaker/hakmem/boolean.html#item23">HAKMEM, ITEM 23 (Schroeppel)</a> [(A AND B) + (A OR B) = A + B = (A XOR B) + 2 (A AND B).]
%H Nicholas Pippenger, <a href="http://dx.doi.org/10.1006/jagm.2002.1216">Analysis of carry propagation in addition: an elementary approach</a>, J. Algorithms 42 (2002), 317-333.
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F If A004198(x,y) = 0, then A(x,y) = 0, otherwise A(x,y) = 1 + A(A003987(x,y), 2*A004198(x,y)), where A004198 and A003987 are bitwise-AND and bitwise-XOR respectively.
%e The top left corner of the square array:
%e | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
%e -----+--------------------------------------------------------
%e 0 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
%e 1 | 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4,
%e 2 | 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 3, 3,
%e 3 | 0, 2, 1, 1, 0, 3, 2, 2, 0, 2, 1, 1, 0, 4, 3, 3,
%e 4 | 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2,
%e 5 | 0, 1, 0, 3, 1, 1, 1, 2, 0, 1, 0, 4, 2, 2, 2, 2,
%e 6 | 0, 0, 2, 2, 1, 1, 1, 1, 0, 0, 3, 3, 2, 2, 2, 2,
%e 7 | 0, 3, 2, 2, 1, 2, 1, 1, 0, 4, 3, 3, 2, 2, 2, 2,
%e 8 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
%e 9 | 0, 1, 0, 2, 0, 1, 0, 4, 1, 1, 1, 2, 1, 1, 1, 3,
%e 10 | 0, 0, 1, 1, 0, 0, 3, 3, 1, 1, 1, 1, 1, 1, 2, 2,
%e 11 | 0, 2, 1, 1, 0, 4, 3, 3, 1, 2, 1, 1, 1, 3, 2, 2,
%e 12 | 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1,
%e 13 | 0, 1, 0, 4, 2, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2,
%e 14 | 0, 0, 3, 3, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1,
%e 15 | 0, 4, 3, 3, 2, 2, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1,
%e etc.
%p add3c := proc(a,b) option remember; if(0 = ANDnos(a,b)) then RETURN(0); else RETURN(1+add3c(XORnos(a,b),2*ANDnos(a,b))); fi; end;
%t a[n_, k_] := a[n, k] = If[0 == BitAnd[n, k], 0, 1 + a[BitXor[n, k], 2*BitAnd[n, k]]]; Table[a[n - k, k], {n, 0, 14}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 16 2014, updated Mar 06 2016 after Maple *)
%o (PARI)
%o up_to = 120;
%o A050602sq(x,y) = if(!bitand(x,y), 0, 1+A050602sq(bitxor(x,y),2*bitand(x,y)));
%o A050602list(up_to) = { my(v = vector(up_to), i=0); for(a=0, oo, for(col=0, a, i++; if(i > up_to, return(v)); v[i] = A050602sq(col, a-col))); (v); };
%o v050602 = A050602list(up_to);
%o A050602(n) = v050602[1+n]; \\ _Antti Karttunen_, Sep 04 2023
%Y Row/Column 1: A007814, Row/Column 2: A050605, Row/Column 3: A050606. See also A372554 [A(n, 2n+1)].
%Y Cf. A003056, A003987, A004198, A050600, A050601, A048720.
%Y Cf. also A192054.
%Y Cf. also A072030 (A285721) for similar arrays computed for an elementary Euclidean algorithm.
%K nonn,tabl,nice
%O 0,12
%A _Antti Karttunen_, Jun 22 1999
%E Name edited by _Antti Karttunen_, Sep 04 2023