login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050443
a(0)=4, a(1)=0, a(2)=0, a(3)=3; thereafter a(n) = a(n-3) + a(n-4).
6
4, 0, 0, 3, 4, 0, 3, 7, 4, 3, 10, 11, 7, 13, 21, 18, 20, 34, 39, 38, 54, 73, 77, 92, 127, 150, 169, 219, 277, 319, 388, 496, 596, 707, 884, 1092, 1303, 1591, 1976, 2395, 2894, 3567, 4371, 5289, 6461, 7938, 9660, 11750, 14399, 17598, 21410, 26149, 31997
OFFSET
0,1
COMMENTS
Related to Perrin sequence. a(p) is divisible by p for primes p.
Wells states that Mihaly Bencze [Beneze] (1998) proved the divisibility property for this sequence: that a(n) is always divisible by n when n is prime. - Gary W. Adamson, Nov 14 2006
As a(n) = trace(M^n) where M = [0,1,0,0; 0,0,1,0; 0,0,0,1; 1,1,0,0], the previous property comes from the fact that trace(M^n) = trace(M) (= 0) mod n for n prime. - Robert FERREOL, Apr 09 2024
REFERENCES
David Wells, "Prime Numbers, the Most Mysterious Figures in Math", John Wiley & Sons, Inc.; 2005, p. 103.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
Mihaly Bencze, Dan Saracino, and Allen Stenger, Solution of Problem 10655: A Recurrence Generating Multiples of Primes, American Mathematical Monthly 107 (2000) 281-282.
Gregory T. Minton, Linear recurrence sequences satisfying congruence conditions, Proc. Amer. Math. Soc. 142 (2014), no. 7, 2337--2352. MR3195758.
FORMULA
G.f.: (4-x^3)/(1-x^3-x^4). - Christian G. Bower, Dec 23 1999
a(n) = (x_1)^n + (x_2)^n + (x_3)^n + (x_4)^n where (x_i) 1 <= i <= 4 are the roots of x^4 = x + 1. - Benoit Cloitre, Oct 27 2003
Let M = the 4 X 4 matrix [0,1,0,0; 0,0,1,0; 0,0,0,1; 1,1,0,0]; then a(n) = the leftmost term of M^n * [4,0,0,3]. Example: a(13) = 13 since M^13 * [4,0,0,3] = [13,21,18,20]. - Gary W. Adamson, Nov 14 2006
a(0) = 4 and a(n) = n*Sum_{k=1..floor(n/3)} binomial(k,n-3*k)/k for n > 0. - Seiichi Manyama, Mar 04 2019
From Aleksander Bosek, Mar 10 2019: (Start)
a(n+10) = a(n+5) + 2*a(n+3) + a(n).
a(n+11) = a(n+6) + 3*a(n+1) + 2*a(n).
a(n+12) = a(n+10) + 5*a(n+5) + a(n).
a(n+12) = 3*a(n+5) + a(n+3) + a(n).
a(n+13) = 3*a(n+6) + 2*a(n+1) + a(n).
a(n+14) = 2*a(n+8) + 3*a(n+3) + a(n).
a(n+15) = 2*a(n+7) + 4*a(n+5) + a(n).
a(n+15) = 2*a(n+9) + 4*a(n+1) + 3*a(n).
a(n+19) = a(n+17) + 5*a(n+5) + a(n).
a(n+20) = 5*a(n+10) + 6*a(n+5) + a(n).
a(n+22) = a*(n+21) + 5*a(n+5) + a(n).
a(n+25) = 2*a(n+21) + 5*a(n+5) + a(n).
a((s+4)*n+m) = Sum_{l=0..n} binomial(n-l,l)*a(s*n+l+m) for every m,s > 0.
a(m) = Sum_{l=0..n}(-1)^{n-l}*binomial(n-l,l)*a(m+n+3*l) for every m > 0. (End)
a(n) = 4*A017817(n) - A017817(n-3). - R. J. Mathar, Aug 10 2021
EXAMPLE
a(11) = 11 because a(7) = 7 and a(8) = 4.
MATHEMATICA
LinearRecurrence[{0, 0, 1, 1}, {4, 0, 0, 3}, 60] (* G. C. Greubel, Mar 04 2019 *)
PROG
(PARI) polsym(x^4-x-1, 55) \\ Joerg Arndt, Mar 04 2019
(Magma) I:=[4, 0, 0, 3]; [n le 4 select I[n] else Self(n-3) +Self(n-4): n in [1..60]]; // G. C. Greubel, Mar 04 2019
(Sage) ((4-x^3)/(1-x^3-x^4)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Mar 04 2019
(GAP) a:=[4, 0, 0, 3];; for n in [5..60] do a[n]:=a[n-3]+a[n-4]; od; Print(a); # Muniru A Asiru, Mar 09 2019
CROSSREFS
Column 3 of A306646.
Sequence in context: A266270 A091467 A224861 * A306770 A308278 A308277
KEYWORD
easy,nonn
AUTHOR
Tony Davie (ad(AT)dcs.st-and.ac.uk), Dec 23 1999
EXTENSIONS
More terms from Christian G. Bower, Dec 23 1999
More terms from Benoit Cloitre, Oct 27 2003
STATUS
approved