login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exponential reversion of Euler totient function A000010.
2

%I #19 Apr 22 2020 19:21:18

%S 1,-1,1,3,-39,257,-909,-6389,183715,-2326009,15050003,140089725,

%T -6804608381,130909360315,-1286161585477,-12952744700713,

%U 970148927462835,-25588194678272039,347909302401071797

%N Exponential reversion of Euler totient function A000010.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H <a href="/index/Res#revert">Index entries for reversions of series</a>

%F E.g.f. A(x) satisfies: A(x) = x - Sum_{k>=2} phi(k) * A(x)^k / k!. - _Ilya Gutkovskiy_, Apr 22 2020

%t length = 20; Range[length]! InverseSeries[Sum[EulerPhi[n] x^n/n!, {n, 1, length}] + O[x]^(length+1)][[3]] (* _Vladimir Reshetnikov_, Nov 07 2015 *)

%o (PARI) seq(n)= Vec(serlaplace(serreverse(sum(k=1, n, eulerphi(k)*x^k/k!) + O(x*x^n)))); \\ _Michel Marcus_, Apr 21 2020

%Y Cf. A000010, A050391.

%K sign

%O 1,4

%A _Christian G. Bower_, Nov 15 1999