Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 May 21 2021 08:11:19
%S 1,1,1,2,1,2,2,5,1,2,2,5,2,5,5,15,1,2,2,5,2,5,5,15,2,5,5,15,5,15,15,
%T 52,1,2,2,5,2,5,5,15,2,5,5,15,5,15,15,52,2,5,5,15,5,15,15,52,5,15,15,
%U 52,15,52,52,203,1,2,2,5,2,5,5,15,2,5,5,15,5,15,15,52,2,5,5,15,5,15
%N Main diagonal of A050314.
%C Also, a(n) is the number of odd multinomial coefficients n!/(k_1!...k_m!) with 1 <= k_1 <= ... <= k_m and k_1 + ... + k_m = n. - _Pontus von Brömssen_, Mar 23 2018
%C From _Gus Wiseman_, Mar 30 2019: (Start)
%C Also the number of strict integer partitions of n with no binary carries. The Heinz numbers of these partitions are given by A325100. A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. For example, the a(1) = 1 through a(15) = 15 strict integer partitions with no binary carries are:
%C (1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (C) (D) (E) (F)
%C (21) (41) (42) (43) (81) (82) (83) (84) (85) (86) (87)
%C (52) (92) (94) (A4) (96)
%C (61) (A1) (C1) (C2) (A5)
%C (421) (821) (841) (842) (B4)
%C (C3)
%C (D2)
%C (E1)
%C (843)
%C (852)
%C (861)
%C (942)
%C (A41)
%C (C21)
%C (8421)
%C (End)
%H Alois P. Heinz, <a href="/A050315/b050315.txt">Table of n, a(n) for n = 0..16383</a>
%H Michael Gilleland, <a href="/selfsimilar.html">Some Self-Similar Integer Sequences</a>
%F Bell number of number of 1's in binary: a(n) = A000110(A000120(n)).
%p a:= n-> combinat[bell](add(i,i=convert(n, base, 2))):
%p seq(a(n), n=0..100); # _Alois P. Heinz_, Apr 08 2019
%t binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
%t Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&stableQ[#,Intersection[binpos[#1],binpos[#2]]!={}&]&]],{n,0,20}] (* _Gus Wiseman_, Mar 30 2019 *)
%t a[n_] := BellB[DigitCount[n, 2, 1]];
%t a /@ Range[0, 100] (* _Jean-François Alcover_, May 21 2021 *)
%Y Cf. A000110, A000120, A050314.
%Y Cf. A070939, A080572, A247935, A267610.
%Y Cf. A325093, A325095, A325096, A325099, A325100, A325103, A325110, A325123.
%Y Main diagonal of A307431 and of A307505.
%K nonn
%O 0,4
%A _Christian G. Bower_, Sep 15 1999