login
Number of digits in the prime factorization of n (counting terms of the form p^1 as p).
8

%I #22 Aug 11 2014 22:45:19

%S 1,1,1,2,1,2,1,2,2,2,2,3,2,2,2,2,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,2,3,3,

%T 2,4,2,3,3,3,2,3,2,4,3,3,2,3,2,3,3,4,2,3,3,3,3,3,2,4,2,3,3,2,3,4,2,4,

%U 3,3,2,4,2,3,3,4,3,4,2,3,2,3,2,4,3,3,3,4,2,4,3,4,3,3,3,3,2,3,4,4,3,4

%N Number of digits in the prime factorization of n (counting terms of the form p^1 as p).

%C a(A192010(n)) = n and a(m) != n for m < A192010(n);

%C a(A046759(n))<A055642(A046759(n)); a(A046758(n))=A055642(A046758(n)); a(A046760(n))>A055642(A046760(n)). [_Reinhard Zumkeller_, Jun 21 2011]

%H Reinhard Zumkeller, <a href="/A050252/b050252.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeFactorization.html">Prime Factorization.</a>

%t nd[n_]:=Total@IntegerLength@Select[Flatten@FactorInteger[n],#>1&];Table[If[n==1,1,nd[n]],{n,102}] (* _Vladimir Joseph Stephan Orlovsky_, Jan 30 2012 *)

%o (Haskell)

%o a050252 1 = 1

%o a050252 n = sum $ map a055642 $

%o (a027748_row n) ++ (filter (> 1) $ a124010_row n)

%o -- _Reinhard Zumkeller_, Aug 03 2013, Jun 21 2011

%Y Cf. A046758, A073048.

%Y Cf. A055642, A020639, A027748, A124010, A110475.

%K nonn,base

%O 1,4

%A _Eric W. Weisstein_