login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smaller of Smith brothers.
8

%I #34 Dec 23 2022 17:25:37

%S 728,2964,3864,4959,5935,6187,9386,9633,11695,13764,16536,16591,20784,

%T 25428,28808,29623,32696,33632,35805,39585,43736,44733,49027,55344,

%U 56336,57663,58305,62634,65912,65974,66650,67067,67728,69279,69835,73615,73616,74168

%N Smaller of Smith brothers.

%H Amiram Eldar, <a href="/A050219/b050219.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Robert Israel)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SmithBrothers.html">Smith Brothers.</a>

%p issmith:= proc(n)

%p if isprime(n) then return false fi;

%p convert(convert(n,base,10),`+`) = add(t[2]*convert(convert(t[1],base,10),`+`),t=ifactors(n)[2])

%p end proc:

%p S:= select(issmith, {$4..10^5}):

%p sort(convert(S intersect map(`-`,S,1), list)); # _Robert Israel_, Jan 15 2018

%t smithQ[n_] := !PrimeQ[n] && Total[Flatten[IntegerDigits[Table[#[[1]], {#[[2]]}]& /@ FactorInteger[n]]]] == Total[IntegerDigits[n]];

%t Select[Range[10^5], smithQ[#] && smithQ[#+1]&] (* _Jean-François Alcover_, Jun 07 2020 *)

%o (PARI) isone(n) = {if (!isprime(n), f = factor(n); sumdigits(n) == sum(k=1, #f~, f[k,2]*sumdigits(f[k,1])););}

%o isok(n) = isone(n) && isone(n+1); \\ _Michel Marcus_, Jul 17 2015

%o (Python)

%o from sympy import factorint

%o from itertools import count, islice

%o def sd(n): return sum(map(int, str(n)))

%o def smith():

%o for k in count(1):

%o f = factorint(k)

%o if sum(f[p] for p in f) > 1 and sd(k) == sum(sd(p)*f[p] for p in f):

%o yield k

%o def agen():

%o prev = -1

%o for s in smith():

%o if s == prev + 1: yield prev

%o prev = s

%o print(list(islice(agen(), 38))) # _Michael S. Branicky_, Dec 23 2022

%Y Cf. A006753, A050220.

%K nonn,base

%O 1,1

%A _Eric W. Weisstein_

%E Offset corrected by _Arkadiusz Wesolowski_, May 08 2012