login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of number of permutations of {1, 2, ..., n} having exactly k cycles, each of which is of length >=r for r=4.
3

%I #21 Feb 04 2023 09:46:57

%S 6,24,120,720,5040,1260,40320,18144,362880,223776,3628800,2756160,

%T 39916800,35307360,1247400,479001600,476910720,38918880,6227020800,

%U 6822541440,889945056,87178291200,103440879360,18478684224

%N Triangle of number of permutations of {1, 2, ..., n} having exactly k cycles, each of which is of length >=r for r=4.

%C Generalizes Stirling numbers of the first kind.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 257.

%H Alois P. Heinz, <a href="/A050212/b050212.txt">Rows n = 4..300, flattened</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PermutationCycle.html">Permutation cycle.</a>

%e Triangle begins:

%e : 6;

%e : 24;

%e : 120;

%e : 720;

%e : 5040, 1260;

%e : 40320, 18144;

%e : 362880, 223776;

%e : 3628800, 2756160;

%e : 39916800, 35307360, 1247400;

%p b:= proc(n) option remember; expand(`if`(n=0, 1, add(

%p b(n-i)*x*binomial(n-1, i-1)*(i-1)!, i=4..n)))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):

%p seq(T(n), n=4..20); # _Alois P. Heinz_, Sep 25 2016

%t b[n_] := b[n] = Expand[If[n==0, 1, Sum[b[n-i] x Binomial[n-1, i-1] (i-1)!, {i, 4, n}]]];

%t T[n_] := Function[p, Table[Coefficient[p, x, i], {i, Exponent[p, x]}]][b[n]];

%t Table[T[n], {n, 4, 20}] // Flatten (* _Jean-François Alcover_, Dec 07 2019, after _Alois P. Heinz_ *)

%Y Cf. A008275, A008306, A050211, A050213.

%K nonn,tabf

%O 4,1

%A _Eric W. Weisstein_

%E Offset changed from 1 to 4 by _Alois P. Heinz_, Sep 25 2016