login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the coefficient of the term a^(-n) in the asymptotic series for the least positive zero of the generalized Rogers-Ramanujan continued fraction.
0

%I #13 Aug 24 2021 18:07:53

%S 1,-1,2,-6,21,-79,311,-1266,5289,-22553,97763,-429527,1908452,

%T -8560532,38713510,-176318081,808018789,-3723242051,17239848937,

%U -80174546765,374319144257,-1753833845882,8243964424236,-38865436663306

%N a(n) is the coefficient of the term a^(-n) in the asymptotic series for the least positive zero of the generalized Rogers-Ramanujan continued fraction.

%H Bruce C. Berndt, Sen-Shan Huang, Jaebum Sohn and Seung Hwan Son, <a href="https://doi.org/10.1090/S0002-9947-00-02337-0">Some Theorems on the Rogers-Ramanujan Continued Fraction in Ramanujan's Lost Notebook</a>, Transactions of the AMS, 352 (2000), 2157-2177.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rogers-RamanujanContinuedFraction.html">Rogers-Ramanujan Continued Fraction</a>

%o (PARI) {RR(n,w,z,p,po,i,m,h,h1,j,w1,h2)=w=1+O(x^(n+1)); p=1; po =1; for(i=1,n,w=p-po*x*q^i; po=p; p=w); m=poldegree(w); w1=0; for(i=0,m,h=polcoeff(w,i); h1=0; for (j=1,n-1+i,h1=h1+polcoeff(h,j)*q^j); w1=w1+h1*x^i); q=0; for (i=1,n-1,q=q+s[i]/x^i); q=q+y/x^n; z=eval(w1); kill(q); h2=polcoeff(z,-(n-1)); polcoeff(h2,1)*polcoeff(h2,0)*(-1)} s=vector(30); s[1]=1; print(s[1]); for (j=2,30,s[j]=RR(j); print(s[j])); \\ Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 13 2000

%K sign

%O 1,3

%A _Eric W. Weisstein_

%E More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 13 2000