login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 2.
10

%I #21 Nov 15 2019 03:30:13

%S 1,3,2,3,5,6,8,13,21,22,24,29,37,58,82,119,201,202,204,209,217,238,

%T 262,299,381,582,786,1003,1265,1646,2432,3697,6129,6130,6132,6137,

%U 6145,6166,6190,6227,6309,6510,6714,6931,7193,7574,8360

%N a(n) = a(n-1) + a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 2.

%C Variant of A050028 and A050044. - _R. J. Mathar_, Oct 15 2008

%H Ivan Neretin, <a href="/A050060/b050060.txt">Table of n, a(n) for n = 1..8193</a>

%p a := proc(n) option remember;

%p `if`(n < 4, [1, 3, 2][n], a(n - 1) + a(-2^ceil(log[2](n - 1)) + 2*n - 3)):

%p end proc:

%p seq(a(n), n = 1..60); # _Petros Hadjicostas_, Nov 14 2019

%t Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 3, 2}, Flatten@Table[2 k - 1, {n, 5}, {k, 2^n}]] (* _Ivan Neretin_, Sep 07 2015 *)

%Y Cf. similar sequences with different initial conditions: A050024 (1,1,1), A050028 (1,1,2), A050032 (1,1,3), A050036 (1,1,4), A050040 (1,2,1), A050044 (1,2,2), A050048 (1,2,3), A050052 (1,2,4), A050056 (1,3,1), A050064 (1,3,3), A050068 (1,3,4).

%K nonn

%O 1,2

%A _Clark Kimberling_

%E Name edited by _Petros Hadjicostas_, Nov 14 2019