Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Feb 03 2023 01:34:13
%S 1,2,4,9,25,43,93,220,617,1016,2039,4112,8401,17598,38292,90070,
%T 252612,415156,830319,1660672,3321521,6643838,13290772,26595030,
%U 53262532,106850150,214945816,434874798,889700788,1859656696
%N a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2*n - 2 - 2^(p+1) and p is the unique integer such that 2^p < n-1 <= 2^(p+1), with a(1) = 1, a(2) = 2 and a(3) = 4.
%C The number m in the definition of the sequence equals 2*n - 2 - x, where x is the smallest power of 2 >= n-1. It turns out that m = 1 + A006257(n-2), where the sequence b(n) = A006257(n) satisfies b(2*n) = 2*b(n) - 1 and b(2*n + 1) = 2*b(n) + 1, and it is related to the so-called Josephus problem. - _Petros Hadjicostas_, Sep 25 2019
%H <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a>
%F a(n) = a(1 + A006257(n-2)) + Sum_{i = 1..n-1} a(i) for n >= 4 with a(1) = 1, a(2) = 2 and a(3) = 4. - _Petros Hadjicostas_, Sep 25 2019
%e From _Petros Hadjicostas_, Sep 25 2019: (Start)
%e a(4) = a(1 + A006257(4-2)) + a(1) + a(2) + a(3) = a(2) + a(1) + a(2) + a(3) = 9.
%e a(7) = a(1 + A006257(7-2)) + a(1) + a(2) + a(3) + a(4) + a(5) + a(6) = a(4) + a(1) + a(2) + a(3) + a(4) + a(5) + a(6) = 93.
%e (End)
%p a := proc(n) local i; option remember; if n < 4 then return [1, 2, 4][n]; end if; add(a(i), i = 1 .. n - 1) + a(2*n - 3 - Bits:-Iff(n - 2, n - 2)); end proc;
%p seq(a(n), n = 1..40); # _Petros Hadjicostas_, Sep 25 2019, courtesy of _Peter Luschny_
%Y Cf. A006257, A049920, A049939, A049960, A049964, A049979.
%Y Cf. A049914 (similar, but with minus a(m/2)), A049915 (similar, but with minus a(m)), A049962 (similar, but with plus a(m/2)).
%K nonn
%O 1,2
%A _Clark Kimberling_
%E Name edited by _Petros Hadjicostas_, Sep 25 2019