login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049947 a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2*n - 2 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4. 0

%I

%S 1,1,4,7,20,34,74,175,491,808,1622,3271,6683,13999,30461,71650,200951,

%T 330253,660512,1321051,2642243,5285119,10572701,21156130,42369911,

%U 84998425,170987648,345939364,707749739,1479341773,3219624485

%N a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2*n - 2 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4.

%p s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)) end proc:

%p a := proc(n) option remember;

%p `if`(n < 4, [1, 1, 4][n], s(n - 1) + a(-2^ceil(log[2](n - 1)) + 2*n - 2)):

%p end proc:

%p seq(a(n), n = 1..40); # _Petros Hadjicostas_, Apr 25 2020

%K nonn

%O 1,3

%A _Clark Kimberling_

%E Name edited by _Petros Hadjicostas_, Apr 25 2020

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 11:58 EDT 2022. Contains 353949 sequences. (Running on oeis4.)