Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Nov 07 2019 18:32:05
%S 1,1,4,7,14,34,65,127,254,634,1206,2381,4742,9477,18951,37899,75798,
%T 189494,360040,710606,1416477,2830593,5660011,11319450,22638520,
%U 45276913,90553764,181107497,362214974,724429941,1448859879,2897719755,5795439510,14488598774,27528337672,54332245406
%N a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n-1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4.
%F From _Petros Hadjicostas_, Nov 06 2019: (Start)
%F a(n) = a(2^ceiling(log_2(n-1)) + 2 - n) + Sum_{i = 1..n-1} a(i) for n >= 4.
%F a(n) = a(n - 1 - A006257(n-2)) + Sum_{i = 1..n-1} a(i) for n >= 4. (End)
%e From _Petros Hadjicostas_, Nov 06 2019: (Start)
%e a(4) = a(2^ceiling(log_2(4-1)) + 2 - 4) + a(1) + a(2) + a(3) = a(2) + a(1) + a(2) + a(3) = 7.
%e a(5) = a(2^ceiling(log_2(5-1)) + 2 - 5) + a(1) + a(2) + a(3) + a(4) = a(1) + a(1) + a(2) + a(3) + a(4) = 14.
%e a(6) = a(2^ceiling(log_2(6-1)) + 2 - 6) + a(1) + a(2) + a(3) + a(4) + a(5) = a(4) + a(1) + a(2) + a(3) + a(4) + a(5) = 34.
%e a(7) = a(7 - 1 - A006257(7-2)) + Sum_{i = 1..6} a(i) = a(3) + Sum_{i = 1..6} a(i) = 65.
%e a(8) = a(8 - 1 - A006257(8-2)) + Sum_{i = 1..7} a(i) = a(2) + Sum_{i = 1..7} a(i) = 127. (End)
%p s:= proc(n) option remember; `if`(n<1, 0, a(n)+s(n-1)) end:
%p a:= proc(n) option remember; `if`(n<4, [1, 1, 4][n],
%p s(n-1)+a(Bits:-Iff(n-2$2)+3-n))
%p end:
%p seq(a(n), n=1..36); # _Petros Hadjicostas_, Nov 06 2019
%Y Cf. A006257, A049933, A049937.
%K nonn
%O 1,3
%A _Clark Kimberling_
%E Name edited by and more terms from _Petros Hadjicostas_, Nov 06 2019