login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049799 a(n) = Sum_{k = 3..n} T(n,k), where the array T is A049801. 4

%I #21 Sep 08 2022 08:44:58

%S 0,0,0,0,2,0,3,2,9,0,8,12,12,5,18,15,29,12,18,29,48,21,26,42,54,38,63,

%T 39,65,51,69,92,87,45,77,105,129,77,114,96,134,123,111,146,189,126,

%U 149,144,180,170,219,207,209,156,198,245

%N a(n) = Sum_{k = 3..n} T(n,k), where the array T is A049801.

%H G. C. Greubel, <a href="/A049799/b049799.txt">Table of n, a(n) for n = 3..1000</a>

%p seq(add(n mod floor(k/3), k = 3 .. n), n = 3..60); # _Petros Hadjicostas_, Nov 20 2019

%t Table[Sum[Mod[n, Floor[k/3]], {k, 3, n}], {n, 3, 60}] (* _G. C. Greubel_, Dec 09 2019 *)

%o (PARI) vector(60, n, sum(k=3,n+2, (n+2)%(k\3)) ) \\ _G. C. Greubel_, Dec 09 2019

%o (Magma) [ (&+[n mod Floor(k/2): k in [3..n]]): n in [3..60]]; // _G. C. Greubel_, Dec 09 2019

%o (Sage) [sum( n%floor(k/3) for k in (3..n)) for n in (3..60)] # _G. C. Greubel_, Dec 09 2019

%o (GAP) List([3..60], n-> Sum([3..n], k-> n mod Int(k/3)) ); # _G. C. Greubel_, Dec 09 2019

%Y Cf. A049798, A049800.

%Y Row sums of triangle A049801.

%K nonn

%O 3,5

%A _Clark Kimberling_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 7 16:40 EDT 2024. Contains 375749 sequences. (Running on oeis4.)